Many recent and spectacular advances in the world of materials are related to complex materials having extraordinary and unique features, usually determined by their specific microstructure. Such materials are key to much technology appearing in our daily lives: they are in liquid crystal displays, in miniaturised phones, special steels in cars, plastics and composites in the construction of modern airplanes, in biological implants in human bodies, and so on. However, despite the impressive technological applications of these materials, the theoretical understanding and modelling of them are still inadequate.The need for models and basic understanding is not just of theoretical interest, but indeed a key requirement for being able to access and further develop the true potential of these materials, to optimise them, to combine them into new materials, and to use them for creating new devices, with predefined abilities and behaviours.