skip to content


This page lists the preprints associated with this programme only.
A full list is also available, with details of how to submit relevant papers and how to acknowledge INI.

Search preprint archive
Authors Title Attachments
E Shuryak; A Zhitnisky The gluon/charm content of the $\eta \prime$ meson and instantons PDF icon ni97033.pdf
D Zwanziger Renormalization in the Coulomb gauge and order parameter for confinement in QCD PDF icon ni97032.pdf
CP Bachas; MR Douglas; MB Green Anomalous creation of branes PDF icon ni97030.pdf
CM Hull Gravitational duality, branes and charges PDF icon ni97028.pdf
PS Howe; E Sezgin; PC West Aspects of superembeddings PDF icon ni97027.pdf
P van Baal Intermediate volumes and the role of instantons PDF icon ni97025.pdf
JP Gauntlett Intersecting branes PDF icon ni97023.pdf
JP Gauntlett Duality and supersymmetric monopoles PDF icon ni97022.pdf
JM Figueroa-O'Farrill; C Köhl; B Spence Supersymmmetry and the cohomology of (hyper) Kähler manifolds PDF icon ni97021.pdf
N Dorey; VV Khoze; MP Mattis; et al Multi-instantons, three-dimensional guage theory, and the Gauss-Bonnet-Chern theorem PDF icon ni97020.pdf
N Dorey; VV Khoze; MP Mattis Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold PDF icon ni97019.pdf
I Halperin; A Zhitnitsky Polarized intrinsic charm as a possible solution to the proton spin problem PDF icon ni97018.pdf
A Sen; S Sethi The mirror transform of type I vacua in six dimensions PDF icon ni97017.pdf
O Bärwald; RW Gebert; H Nicolai On the imaginary simple roots of the Borcherds algebra PDF icon ni97016.pdf
JP Gauntlett; GW Gibbons; G Papadopoulos; et al Hyper-Kähler manifolds and multiply intersecting branes PDF icon ni97015.pdf
A Sen Orientifold limit of F-theory vacua PDF icon ni97013.pdf
P Hasenfratz; F Niedermayer Fixed-point actions in 1-loop perturbation theory PDF icon ni97008.pdf
A Sen F-theory and the Gimon-Polchinsky orientifold PDF icon ni97006.pdf
CM Hull Actions for (2,1) sigma models and strings PDF icon ni97005.pdf
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons