
4 April 2012 – 20 June 2012

Intersections  
Henry Moore and stringed surfaces



Intersections features the work of Henry Spencer Moore (1898 – 1986), displayed with models 
from the Science Museum and modern scientific imagery. The exhibition is in joint London 
venues: the Science Museum’s Mathematics Gallery and the Royal Society’s President’s 
Gallery, both under the auspices of the Isaac Newton Institute for Mathematical Sciences.

The Royal Society and The Isaac Newton Institute would like to thank the following organisations for their generous support  
of the exhibition:

Cover image: Mother and Child,1938, by Henry Moore. Image courtesy of The Henry Moore Foundation. LH 186.
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Olivier’s String Models
The great French mathematician Gaspard Monge (1746 – 
1818) invented what came to be called descriptive geometry 
and illustrated his discoveries using surfaces created by 
stretching strings across a curved frame. In mathematics 
these are called ruled surfaces because through every point 
there is at least one, sometimes more than one, straight line 
which lies on the surface. Cones and cylinders are obvious 
examples but there are many others. 

The pedagogical application of Monge’s string models was 
taken up by his pupil Théodore Olivier (1793 – 1855) who 
used articulated frames with moveable components, as 
exemplified in this exhibition, to visualise a wide variety of 
surfaces simultaneously using different coloured strings. 
Olivier was famous for his exquisite models, which were  
sold and copied throughout Europe and in the United States. 
He was practically minded and large collections of his 
models were acquired by engineering departments, from  
the University of Arizona to the US Military Academy at  
West Point. These institutions were eager to assimilate for 
the benefit of their students the latest design technology,  
the equivalent in their time of modern computer graphics 
and computer-aided design. 

As an example, Olivier was able to illustrate to his students 
curves in three dimensions that were created by the 
intersection of two ruled surfaces. Indeed, it was this feature 
that caught the eye of a young Henry Moore when, as a 
student at the Royal College of Art, he visited the Science 
Museum in London, which houses a collection of Olivier 
string models.

String Theory
In Olivier’s models the strings are fixed in space. The surfaces 
they create relate to a branch of pure mathematics which 
concerns itself with how ``singularities’’ such as cusps and 
corners can be created from collections of smooth objects 
such as straight lines and planes. By way of contrast, String 
Theory is a branch of mathematical physics in which the 
fundamental concept is a string which vibrates in space. 

String Theory emerged from various attempts to unify our 
understanding of the physical world and to address the 
deep problem of how to make the quantum mechanics 
of Heisenberg and Schrödinger consistent with Einstein’s 
theory of relativity. In the so-called Standard Model of 
particle physics (not, of course, a mechanical model like 
Olivier’s, but a model in the sense of a mathematical theory 
that predicts the outcomes of experiments), particles are 

regarded as points identified in space and time not only by 
their position, velocity, mass and electric charge, but also by 
their colour, (the "charge" associated with the strong nuclear 
interactions) and their spin. The Standard Model successfully 
incorporated three of the four known natural forces: 
electromagnetism, and the strong and weak nuclear forces. 
However the important force of gravity, which is described 
by the theory of general relativity, was not included. One aim 
of String Theory is to resolve this problem.

In String Theory different modes of vibration of strings 
represent particles with various properties, including the 
graviton, which is the quantum particle associated with the 
force of gravity. Consequently String Theory is a leading 
candidate for the reconciliation of general relativity and 
quantum mechanics. However it has turned out that a fully 
consistent String Theory, which contains matter particles 
such as quarks and electrons as well as force particles like 
photons, gravitons and gluons, requires ten space-time 
dimensions. Because the world in which we live appears to 
have only four space-time dimensions, a conjecture is that 
the space occupied by the other dimensions of String Theory 
is tightly curled up in the form of a six-dimensional Calabi–
Yau manifold, a sophisticated geometric object discovered 
and studied only in the second half of the last century. 

String Theory is a highly active area of current research in 
which open questions in fundamental physics are formulated 
and examined in the sophisticated language of modern 
mathematics. At the Isaac Newton Institute for Mathematical 
Sciences, which sponsors this exhibition, there is ongoing 
research on M-theory, an eleven-dimensional extension of 
the theory that includes not just strings but membranes and 
other extended objects.

The Isaac Newton Institute for Mathematical Sciences
Twenty years ago the Isaac Newton Institute in Cambridge 
was created with the remit of nurturing and contributing 
to the already very high standing of the United Kingdom 
in the world of research mathematics. No scientific or 
societal topic with significant mathematical content was to 
be excluded a priori from its activities and, because of its 
modest size, scientific merit was to be the major factor in 
choosing what research it would support. Since then it has 
become one of the leading mathematical research institutes 
in the world. A landmark in the history of the Institute was 
the announcement there by Sir Andrew Wiles of his strategy 
for proving Fermat’s Last Theorem which had been an open 
question in number theory for 350 years. 

Intersections: Henry Moore and stringed surfaces



4   Intersections: Henry Moore and stringed surfaces

Research in mathematics tends to consist of major 
breakthroughs, with rapid exploitation of new ideas,  
followed by long periods of consolidation. The Isaac  
Newton Institute has established itself as an important 
world centre by focussing on breakthroughs rather than 
consolidation. The Institute therefore chooses to support 
fields whose importance and diversity are likely to have 
significant long-term impact involving world leaders in 
research, often from very different backgrounds. 

Intersections are crucial to the work of the Institute. The 
Institute has hosted programmes in areas as diverse as the 
mathematical aspects of astronomy, biology, economics, 
epidemiology, finance, materials science, medicine, 
meteorology, networks, oceanography and particle physics 
and bringing together researchers with different backgrounds 
and experience has yielded insights that neither discipline 

could have achieved if working in isolation. To quote the 
Institute’s founding Director, Sir Michael Atiyah OM: "If you 
attack a mathematical problem directly, very often you come 
to a dead end, nothing you do seems to work and you feel 
that if only you could peer round the corner there might be 
an easy solution. There is nothing like having somebody else 
beside you, because he can usually peer round the corner."

The common thread running through the Institute’s research 
programmes is leading edge mathematics of the highest 
standard in the world. 

John Toland FRS
Isaac Newton Institute for Mathematical Sciences, 
Cambridge
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Keith Moore September 2011

To say that mathematics and art have a long historical 
relationship is to state nothing new. Not even by suggesting 
that for thousands of years artists as well as mathematicians 
have been interested in geometric forms do we make a claim 
for groundbreaking insight. It is evident that mathematicians 
have been drawing and modelling these forms as a tool for 
investigating ideas of spaces for centuries, and for other 
artists and thinkers such forms have long represented ideals 
of perfection and truth. 
 
However, the mid to late nineteenth century was a 
revolutionary time in mathematics, when conventional 
ideas, such as Euclidean geometry, were being turned on 
their heads. During this period mathematicians began to 
produce less regular and more startling geometric figures. 
Many of these new and exciting mathematical ideas filtered 
into the public sphere and sparked the imagination of 
writers and artists alike. For example, writers such as H.G. 
Wells and artists like Marcel Duchamp were fascinated 
with non-Euclidean geometry and the idea of a spatial 
fourth dimension. The surrealists found that “non-Euclidean 
geometry signified a new freedom from the tyranny of 
established laws”.1 Mathematics, in this way, represented 
both progress and the potential for chaos.

The two major artistic movements of the following period, 
the surrealists and the constructivists, appear to have 
discovered geometric mathematical models around the 
same time. Surrealist photographer and painter Man Ray 
produced a series of photographs in 1936 of mathematical 
models housed at the Poincaré Institute in Paris, while the 
Constructivist Naum Gabo began to draw direct inspiration 
from the forms of mathematical models in the early 1930s. 
In his 1936 book, Cubism and Abstract Art, Alfred Barr made 
even more of Gabo's connection with models, stating that 
Gabo “had been studying mathematics in Munich and had 
made mathematical models”, although the evidence for this 
statement is unclear.

The influence of these encounters between avant-garde 
art and mathematics extends to Britain through a number 
of routes. One such path is through the work of Barbara 
Hepworth, who had contact with Naum Gabo while the artist 
was in England during 1936 – 1946. Yet, Hepworth may have 
seen mathematical models before she encountered Gabo. In 
December 1935, Hepworth sent a letter to her husband Ben 
Nicholson in which she said that architect John Summerson 
had told her that there were “some marvelous things in a 
mathematical school in Oxford -- sculptural working out of 
mathematical equations -- hidden away in a cupboard” and 
that she intended to go and look at them soon.2 A number 
of Hepworth's work exhibit mathematical influence, for 
instance the sculpture Pelagos (1946), echo mathematical 
models both in their form and in their use of string. During 
the 1930s, Hepworth was producing sculptures using string 
and plaster – both materials were unusual for sculpture 
of the time, and both were materials widely used in the 
mathematical models that would have been displayed in 
many universities and museums.

In parallel to the work of Hepworth, Henry Moore was also 
using plaster and string to create strange and beautiful 
forms. Indeed, Moore stated on several occasions that the 
use of string in his sculpture, which began in 1937, was 
influenced by seeing models at the Science Museum in 
London: "I was fascinated by the mathematical models I 
saw there, which had been made to illustrate the difference 
of the form that is halfway between a square and a circle. 
One model had a square at one end with 20 holes along 
each side…Through these holes rings were threaded and 
lead to a circle with the same number of holes at the other 
end. A plane interposed through the middle shows the form 
that is halfway between a square and a circle…It wasn't 
the scientific study  of these models but the ability to look 
through the strings as with a bird cage and see one form 
within the other which excited me.”3

Introduction

1  Henderson, L. (1983) The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Princeton: Princeton University Press. p. 339.

2  Hammer, M. and Lodder, C. (1996). Hepworth and Gabo: a Constructivist Dialogue. In D. Thistlewood (ed.) Barbara Hepworth 
Reconsidered. Liverpool: Liverpool University Press (pp. 109 – 133).

3 Hedgecoe, J. and Moore, H (1968). Henry Spencer Moore. New York: Simon and Schuster. p. 105.

To know one thing, you must know the opposite.
Henry Moore‘‘

‘‘



6   Intersections: Henry Moore and stringed surfaces

That encounter between the nineteenth century stringed 
surfaces of Théodore Olivier cited by Moore, and the work 
that resulted from that influence is the subject of this 
exhibition. Yet, Intersections is also an exhibition about how 
individuals, from diverse disciplines, think through problems 
visually in order to discover new solutions and forms. More 
widely, through our own encounter with these strange and 
beautiful works of mathematics and art we glimpse a shared 
conversation between these separate disciplines, and find 
creativity common to both.

Moore’s string figures, the stringed surfaces of Théodore 
Olivier and computer graphics illustrating Calabi–Yau 
manifolds are all visual representations of mathematical 
structures that arise in String Theory. Through shared, 
yet at times opposing, approaches to a simple string, 
this exhibition explores fascinating intersections between 
mathematics and art. Moreover, as the title of the exhibition 
suggests, in mathematics, the intersection of two sets is 
the collection of points, often illustrated by a Venn diagram, 
which are common to both.

Barry Phipps
Churchill College, Cambridge
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The makers of the mathematical surface models were 
inspired by the usefulness of mathematics as a foundation 
for the industrial arts. Henry Moore and his contemporaries 
were inspired by the beauty of mathematics as a springboard 
for the creation of artistic forms. Mathematics and the 
arts have often been entwined, and one such confluence 
occurred in Revolutionary France.

The sculptures are constrained by the aesthetic sensibilities 
of the sculptor, but the mathematical surface models are 
constrained by mathematical forms described by equations. 
Mathematical solid models have a long history1. However, 
interest in surfaces and the construction of surface models 
only began at the end of the eighteenth century, and went 
hand in hand with a change of social use and therefore 
audience2. During the nineteenth century, the ‘great age of 
surface building’ gave rise to collections of exquisite and 
complex models in universities and museums across Europe 
and North America3.

The study of surfaces themselves was prompted by the 
desire to find geodesics, the shortest paths between two 
points on a surface, particularly that of the Earth4. Another 
requirement for a knowledge of surfaces was that of map-
making5. The belief that ‘nature is thrifty in all its actions’ 
gave rise to the study of minimum surfaces6. In particular 
Leonard Euler discovered the ‘catenoid’, the surface of 
minimum area between two circles7.

However, developments in the organisation of mathematics 
are the key to the actual production of models. In France, 
the founding of the Ecole Polytechnique was crucial. There 
students had the best mathematicians of the time; Lagrange, 
Laplace, Fourier, and Poisson to name a few. The person who 
created a new discipline, Descriptive Geometry, and appears 
to have made the first surface models, was Gaspard Monge8. 
Monge wanted to "generalise all the isolated methods hitherto 
employed, not merely in fortification but in perspective, dialling, 
stone-cutting etc into a theoretical code". He introduced 
geometrical thinking back into mathematics, putting it on 
an equal basis with analysis and inspiring the revival of pure 
geometry. We know he had two models of silk thread which 
were extant in 18149, however, unlike the extant models they 
were fixed. 

In 1830 a pupil of Monge, Theodore Olivier, designed a  
series of models which overcame this difficulty.10 These 
models could be distorted and rotated thus providing a 
variety of geometrical configurations. We have a set of  
about 30 in the mathematics collection of the Science 
Museum,11. These were made by Fabre de Lagrange of  
Paris in 1872. Olivier’s personal set were sold after his  
death in 1853 to Union College Schenectady, New York, 
whose set were copied for Princeton as late as 1882. C.W. 
Merrifield wrote: ‘These surfaces, on account of the facility 
with which they can be constructed and represented, and  
of the ease with which their intersections can be determined, 
are of more consequence than any others in the geometry  
of the Industrial Arts.’12 

The history of mathematical surface models

1  See 2005-53 in the Mathematics Gallery of the Science Museum, and the trade card of Edward Scarlet in Calvert H.R. Scientific Trade 
Cards in the Science Museum Collection, 1971.

2  Lawrence, Snezana ‘History of Descriptive Geometry in England’ in Proceedings of the First International Congress on Construction History, 
Madrid, 20th – 24th January 2003.

3  Sakarovitch, Joel. ‘Epures D ‘Architecture’ 1997. Fischer, Gerd ‘Mathematische Modelle/Mathematical Models’ 1986, Mehrtens, Herbert 
‘Mathematical Models’ in The Third Dimension of Science ed Soraya Chadarevian and Nick Hopwood 2004.

4  The contributors were John and James Bernoulli, Alexis Clairaut and Leonard Euler in 1697, 1733 and 1760 respectively.

5  Euler, Leonard in Novi Commentari Academiae Scientiarum Imperialis Petropolitanae vol 16 1771 op vol 1 section 28 p.161-186

6   These studies were influenced by Maupertuis, Pierre Louis Moreau ‘Accord de différentes loix de la nature qui avoient jusqu’ici paru 
incompatibles’ 1744
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In Germany from the 1860s there developed an interest in 
constructing models to represent the furthest frontiers of 
research. This was a very different level of mathematics from 
that illustrated by the French models. In 1868 Julius Plucker 
had made a large collection of surfaces, some of the fourth 
order13. The mass production of surface models also became 
a German phenomenon with the establishing of production 
at Munich by Alexander von Brill14.

The use of models influenced the organisation of 
mathematics. It became imperative for any self-respecting 
University to buy a collection from the 1870s onwards. 
The models had to be kept somewhere which gave rise to 
mathematics teaching collections like the one held at the 
Science Museum, and dictated the ambience of the lectures. 
The models dictated the staffing of institutions as there was 
a need for ‘conservators’ to care for them.

Production of surface models died out at around the time 
of WW1. This was possibly because of general disruption 
to all production, possibly because class sizes were bigger 
and the models are fragile, possibly because after equations 
of the fourth power that particular seam was exhausted. 
Fortunately they have remained on display at the Science 
Museum ever since to inspire new avenues of creativity.

Jane Wess

Science Museum

7   Kline, Morris Mathematical Thought From Ancient to Modern Times, Oxford University Press, 1972. p.579. Euler, Leonard ‘The Art of Finding 
Curved Lines Which Enjoy Some Maximum or Minimum Property’.1744

8  Taton, René. L’Oeuvre Scientifique de Monge. Paris. 1951.

9  Catalogue des Collections du Musee des Arts et Metiers. 1906.

10  Fink, Karl A Brief History of Mathematics 1910 p.277

11  Inv numbers originally ran from 1872-93 to 135, some have been disposed of.

12  Merrifield C.W. ‘Catalogue of a Collection of Models of Ruled Surfaces constructed by Fabre De Lagrange’ 1872. p.3

13  Inv number 1876-508 ‘Fourteen boxwood models of quartic surfaces’. Some are on display in the Mathematics Gallery.

14   W. Dyck. Katalog Mathematischer und Mathematisch Physikalischer Modelle, Apparate, und Instrumente (Reprint)., 1994. Originally in 1892. 
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String surface model: conoids 
by Fabre de Lagrange, 1872

Two equal circles in parallel planes, divided equidistantly, 
are connected by threads, so as to form a cone, a 
cylinder, a conoid, a second conoid.

Science Museum inventory number: 1872-113

String surface model: Conoids 
by Fabre de Lagrange, 1872

The same arrangement as inventory number 1872-113
(opposite) except that the lower ring is replaced by a 
plane of section a little higher up.

Science Museum inventory number: 1872-114

It may say something profound that stretched strings sometimes illustrate complicated geometry, 

inspire great sculpture and arise in a mathematical theory to explain the particles and forces 

in our universe. Inspiration from simplicity is the hallmark of great art and of great science.

The exhibits
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(Above)

String surface model: hyperboloid and 
asymptotic cone 
by Fabre de Lagrange, 1872

Hyperboloid of one sheet, with its asymptotic cone; the 
tangent plane to the cone is also drawn.

Science Museum inventory number: 1872-104

(Left)

String surface model: conoid 
by Fabre de Lagrange, 1872

Conoid in contact with a hyperbolic paraboloid.

Science Museum inventory number: 1872-112
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String surface model: staircase vault 
by Fabre de Lagrange, 1872

Model for exhibiting some properties of this ruled surface 
by showing how it is obtained from the deformation of a 
cylinder.

Science Museum inventory number: 1872-119

String surface model: geometrical groin vault 
by Fabre de Lagrange, 1872

Oblique intersection of two splayed vaults of the same 
spring.

Science Museum inventory number: 1872-129

String surface model: conoids 
by Fabre de Lagrange, 1872

Model showing the transformation of a cylinder into a 
conoid and back again, and also the transformation of a 
cone into a conoid and back again.

Science Museum inventory number: 1872-110

String surface model: hyperbolic paraboloid 
by Fabre de Lagrange, 1872

A skew quadrilateral with its opposite sides equal in 
length and pierced with holes at equal distances.

Science Museum inventory number: 1872-96
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String surface model: hyperbolic paraboloid 
by Fabre de Lagrange, 1872

Two bars equally spaced, each turns on an arm 
perpendicular to itself and one arm swings on a pillar; 
these arms can be ranged in one plane, and also turned 
end for end.

Science Museum inventory number: 1872-93

(Above left) 

String surface model: common groin 
by Fabre de Lagrange, 1872

Intersection of two cylinders having a pair of common 
tangents; the model may be set square or oblique.

Science Museum inventory number: 1872-124

(Above) 

Stringed Figure  
by Henry Moore, 1938

Bronze and elastic string

Size: 273 x 343 x 197mm

Private collection

Image © The Henry Moore Foundation
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(Above) 

Ideas for Sculpture 
by Henry Moore, 1938

Pencil, crayon, watercolour on cream lightweight card 

Size: 166 x 190mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1274

(Right) 

Ideas for Sculpture 1938 
by Henry Moore, 1938

Pencil, crayon on cream lightweight card 

Size: 166 x 190mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1275
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Ideas for Sculpture for Lubetkin’s Flat:  
Stringed Figures 
by Henry Moore, 1938

Pencil on cream medium-weight wove 

Size: 278 x 184mm 

The Henry Moore Foundation: gift of the artist 1977

HMF 1400

(Opposite) 

Ideas for Stringed Figure Sculptures 
by Henry Moore, 1937

Pencil, crayon, pen and ink on cream medium-weight wove

Size: 277 x 190mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1338

Ideas for Stringed Figures 
by Henry Moore, 1938

Pencil on cream medium-weight wove 

Size: 279 x 184mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1404
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Ideas for Sculpture 
by Henry Moore, 1938

Pencil, conté crayon on cream medium-weight wove 

Size: 277 x 183mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1411

(Opposite) 

Ideas for Sculpture 
by Henry Moore, 1938

Pencil, conté crayon, charcoal, watercolour wash on 
cream medium-weight wove 

Size: 277 x 183mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1410

Ideas for Sculpture 
by Henry Moore, 1938

Pencil, conté crayon on cream medium-weight wove 

Size: 278 x 190mm

The Henry Moore Foundation: gift of the artist 1977

HMF 1412
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Stringed Figure 
by Henry Moore, 1938 

Lead and yellow string

Height 171mm  
Unsigned

The Henry Moore Foundation: acquired 1994

LH 186e

(Opposite) 

Stringed Relief 
by Henry Moore, 1937 

Bronze and nylon edition of 2 + 1

Cast: Fiorini, London 1976 
Length 495mm 

The Henry Moore Foundation: gift of the artist 1977

LH 182

Stringed Figure: Bowl 
by Henry Moore, 1938

Bronze and string edition of 9 + 1

Cast: The Art Bronze Foundry, London 1967 
Height 546mm

The Henry Moore Foundation: gift of the artist 1979

LH 186c
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(Above) 

Mother and Child 
by Henry Moore, 1938 

Bronze and red string edition of 9 + 1

Cast: Fiorini, London 1985 
Height 95mm 

The Henry Moore Foundation: acquired 1987

LH 186

(Above) 

Mother and Child 1938 
by Henry Moore, 1938 

Lead and yellow string

Height 95mm 

The Henry Moore Foundation: acquired 1996

LH 186
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(Above) 

Stringed Ball 
by Henry Moore, 1939 

Bronze and string edition of 7

Cast: [probably] The Art Bronze Foundry, London 
Length 89mm 
Unsigned, unnumbered

The Henry Moore Foundation: gift of the artist 1977

LH 198

(Above) 

Head 
by Henry Moore, 1939 

Bronze and string edition of 6 + 1

Cast: The Art Bronze Foundry, London 1968 
Height 137mm 
Signature: stamped Moore, 6/6

The Henry Moore Foundation: gift of the artist 1977

LH 195
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(Above) 

Stringed Head 
by Henry Moore, 1938 

Bronze and string edition of 5 + 1

Cast: Fiorini, London 1966 
Height 111mm 
Signature: marked Moore, [0/5]

The Henry Moore Foundation: gift of the artist 1977

LH 186g

(Opposite) 

Stringed Figure 
by Henry Moore, 1939 

Lead and violet string 
Length 254mm 
Unsigned

The Henry Moore Foundation: gift of Irina Moore 1977

LH 206
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This exhibition has been an extraordinary undertaking, 
representing the collaboration of some of Britain’s finest 
institutions, The Isaac Newton Institute for Mathematical 
Sciences, The Royal Society, The Henry Moore Foundation 
and the Science Museum. Achieving such a wide-ranging 
exhibition has required a diverse and high level of skill from 
staff across these collaborating institutions and we thank 
in particular Sara Wilkinson and Christine West of the Isaac 
Newton Institute, Jane Wess and Boris Jardine of the Science 
Museum, Anita Feldman, Theodora Georgiou and Suzanne 
Eustace of the Henry Moore Foundation and Keith Moore, 
Daisy Barton and Karen Newman of the Royal Society.

The Royal Society would like to express its gratitude for the 
continued support of the 29th May 1961 Charitable Trust.

The Isaac Newton Institute wishes to express its thanks to: 
•  Howard and Veronika Covington and to Sir David and 

Lady Elizabeth Wallace for  generous financial support for 
its 20th anniversary events; 

•  Professor John Barrow, FRS, for his lecture Intersections 
between Art and Mathematics; 

•  Professor Dawn Ades, OBE, FBA, Trustee of the Henry 
Moore Foundation; 

•  The staff and officers of the Henry Moore Foundation  
and of the Science Museum for the loan of the exhibits;

•  The Royal Society for hosting the exhibition;

•  Dr Nicholas Mee for his virtual images. 

It is also grateful to Barry Phipps of Churchill College 
Cambridge for curating the exhibition and for very many 
other kindnesses.
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