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Let U be an M x M unitary matrix with
eigenvalues %1, ..., el

Smooth counting function:
A
M
ZUEII (Ee)

We will study moments of Z;(U) when U is
averaged over one of the classical compact groups.
The first few moments are Gaussian, but the

higher ones are not.

Connections: n-level densities; moments of traces;
zeros of L—functions.

Limitations: Ofl-diagonal contributions are messy.
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A few technicalities:

Let ¢ be a real function such that its Fourier
transform ¢(u) := [ o(z)e(—2u) dz is smooth
and compactly supported.

N.B. for any A > 1, ¢(z) < (1 + |z|)~ for all

z € R.

Let

oo

Fu(0):= Y é(g(ﬁ—l—?wn))

n=—00
The smooth counting function, or one-level
density, or linear statistic is

M
Zy(U) :==Tr Fy(U) := Y Far(6n)

n=1
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CLASSICAL COMPACT GROUPS

e U(N), the group of all N x N unitary
maftrices.

e SO(2N), the subgroup of U(2N) containing
the even orthogonal matrices with
determinant one. If e is an eigenvalue, then

so is e~1?,

e SO(2N + 1), the subgroup of U(2N + 1)
containing the odd orthogonal matrices with
determinant one. If €' is an eigenvalue, then

i0

so is e, and there is an additional

eigenvalue at 1.

e USp(2N), the subgroup of U(2N) containing
the symplectic unitary matrices. That is,
UU' = Iy and U'JU = J where

0 Iy .
J = (: . If € is an eigenvalue
T

—ifd

then so is e

P




/

2
Eu(ny [EE'*—l “'(H"}] =
N

1 U-': h'j 1 : g:mﬂ}
N S det {Q"Y) (ai, )} [ e da,

n=1

2N
Eson) [ezrm: srw',;} _

N
%j{l . Iéftv{QSD[L!N)(Ehmj)} H E'.!g(:r,,} i
4 0w N - 1

=1

AN+ g
ESO(2N+1} [E n=1 4l )] s

\

N
1 SO(2N+1), St
GO [ 4o 1@ oy [T 00,

n=1

N
EUSIJ{ZN) [\Ezﬂ_l g(&,,_]] —
1 HN
USp(2N)(. .. 2g(wn )
N! _/Iﬂ_#'l,-‘\u' I‘?SFV{Q (:I:H:CJ)} n=1 ’ dm“
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Where

QU{.‘V} [m, y) = S‘.\r(m == y)
QSG{EN}{E, y) = Son_1{x —y) + Son—1(z + y)

QSOCNtD (3 o) = Son(z — y) — Son(z + )

QUSP[:EN}(Q:‘ y) = SEN—Fl (E — y:]' - SZN+1($ o y)
where

1 sin(Nz/2)
Sn(z) = o7 sin(z/2)

.
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Our results are:

Theorem 1. If suppo C [—2/m,2/m] then the
first m moments of Z,(U) over the unitary group
U(N) converge as N — oo to the Gaussian
moments with mean

and variance

In other words: If suppg‘f; C[- 2 2 i

\

By = f_ : ¢(x)dz

@5 = [ min(ul, )3 du

mtm
li_lflm Ey [(qu(U) - “g)m]

S (eY)*  if m = 2k is even

0 otherwise

P




/Theorem 2. If supp o C [-1/m,1/m)] and ¢ z's\

even, then

i) the first m moments of Z,(U) when averaged
over either SO(2N) or SO(2N + 1) converge
to the Gaussian moments with mean

00 1
w0 = [ ota) do+ [ 3w) du
—00 1]

and variance

o Vg .
(a'i,f,o]"' o 2f 5 |u,|t;5(i,r,}2 du

1

i) the first m moments of Z,(U) when averaged
over the symplectic group USp(2N) converge
to the Gaussian moments with mean

') 1
= [ otw) do— [ ) du

and variance

1/2

USpy2 _ a2
(aUSP)2 = 2 f s au
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Expand Z;(U) out as a Fourier series, and use

the restriction on the support of E to obtain:
Ey(n) {(Zeh — E(U)) }
1 g ! - m
S e ™ é(ﬁ)""f’(w)

[y |<2N/m |, | <2N/m
i #£0 4]

* E[}(N} LIl . TTU”""}

and use a result of Diaconis and Shahshahani:
Lemma 3. For a;,b; € {0,1,2,...}, if

max Zjaj, Zjbj <N

eS| i=1
then
Eyv § [T (Tr07)™ (TeU~)" b=t [Iiva
Jz1 i1

where 6, =1 if a; = b; for all j, and zero

otherwise.
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Lemma 3 shows that for there to be a non-zero
contribution to the moment, there must be a
bijection 7 mapping {1,...,m} into itself so that
nj = n.(; for all j. This can only happen if m is
even, so the odd moments are identically zero.

For the even moments, counting the number of
repetitions in the n;, and using lemma 3 gives the
result.

Alternatively: A result of Soshnikov gives that,
for £ > 2, the #-th cumulant of Z,(U) vanishes if

supp ¢ € [—2/¢,2/¢).




(i N

ol

=5 L det, {Qv(ﬂuf?)}ﬂﬂm

then the cumulants are defined as

N o tf‘
exXp tzg(x'n.)) = aci’

n=1 =1

logE

and they equal (non-obvious)

£
=Y > (=1y"t(m-1)

m=1oeP(f,m)
" f [1 9% @)@n (e z;+1) da;
™ le

where we identify z,, 1 with ;. Here P({,m) is
the set of all partitions of £ objects into m
non-empty blocks, where the jth block has

\AI,- = Aj(o) elements.

P
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Put
1 £
Cewn{ ) — 5 (_1)rn+l(m 1)1
m=1aeP(f,m)
m
A | COENCR LS

— | i 1

and

GEO=2Y ¥ ()mim-
m“l aeP(fm)

T

f [1 9% @)Sn(z; —ejzj41) da;
[—m®]™ 5=y

wheree; =+1lforj=1,...,m—1and ¢, = —1.

-
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For all ¢,
oy M(g) = 2053 (g)
For all ¢,
C;°% ) (g) = 2'Crzn_1(9) + 2°C5% 1 (0)
For£=1,
CrOBN Y (g) = 20878 (g) — 20233, (g) + 9(0)
and for all £ > 2,
;7N (g) = 2'Ci5Ri () — 2°CE5N (9)
For all ¢,

USpl(2N avern e v
CPENN s~ gfchien . (o) — 206055 . (o)

P




/Further combinatorics allow us to deduce that if\
£>2,

N (g)] <comste > gk |- gk

keZ*
ko4t ke | =N

We already know that if £ > 3

|C5%"(9)] < comsty Y |9 | - - - |k, |
kit-thp=0
[kt [+t e | >2N

Set

g(8) = F(0) := Z ¢ (%(9 + 27?3'))

j=—00

(where M = 2N for SO(2N) or USp(2/V), and
M = 2N +1 for SO(2N + 1)), so

1~/ k
Hk=ﬁ¢(ﬁ)

Thus, if supp ¢ € [—1/£,1/£] the first £ cumulants
of Z,(U) are Gaussian for SO(2N), SO(2N + 1)

\and USp(2N). /
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We can also use the cumulants to improve the
theorem of Diaconis and Shahshahani:

Theorem 4. Let Z; be independent standard
normal random variables, and let

1  ifj is even
W= e
0 ifj is odd

Lt e €405 152500 F o = 1,20 c0nen

o IfY ja; <M —1, then

Eso(m) {H(Tf LY } =E {H(\/}ZJ +n;)“ }
o If> ja; <M+1, where M is even, then

Eusp(ar) {H(T‘r U7yt } =FE {H(\/EZ-?' — )Y

5 /




/The n-level density can be written as \

¥
Eu(ay ! p B aﬂ_;n.)]

Alarens Tn
= / h(x) det {QI"—(NJ(%:,:EJ-)} dx
[—']T,'i"l']:” nixn
where the prime on the sum means the sum is

only over distinet indices.

By an inclusion / exclusion argument we can
remove the “distinet” condition.

Therefore, if we know the moments of traces, the
n-level density can be evaluated.

But the moments of traces can be evaluated [rom
moments of the smooth counting function, and
vice versa.

Therefore we need only consider

h(fﬂl, . --;xn) — H{b(mj}
§=1

and the n-level density can be found from
Qloments of the smooth counting function. /
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Let {z;} be a random doubly infinite sequence.
Fix m > 1 integer. TFAE:

e For all ¢ with suppqah C[-2

e ? o d?

(Z s@) - [ ow) dy)

(2k)! { el B .
_ ) 2FRT (Jr_1 |u||p(u)]| ) if n = 2k is even
0

otherwise
foralll1<n<m.

e Lor all ¢l) seey ql’m with supp (33' c [—*1 2

m? md?

E Zr ¢1($J-1)"'j¢'”(mj‘u)
J1seenadn

- / et {Bi?r((yf — }jH ¢;(y;) dy;

foralll1 <n<m.

L /
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RIEMANN ZETA ZEROS: UNITARY

Non-trivial zeros: & + iv,, ordered with increasing
height: 0 < Re(y1) £ Re(yn) < ...

Riemann Hypothesis: ~,, € R for all n.

Counting function of Riemann zeros:
N(T)=#{v. : 0< Re(,) < T}
= N(T) + 8(T)
where
N(T) = 1+ ~9mlog (w—”‘f‘zr(i + iiT))
= 173

T T 7 1
:—l T — — =
om 9850 T 5 TOF)

and the error term is

S(T) = ?—ll_ﬁrn log {(% +iT)

5 /
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‘What is the distribution of the number of zeros
lying in an interval of size h around height 77

That is: What is the distribution of
N(t+h) — N(t) averaged over T <t < 277

The mean is
9

1 — — h
= Nt - N t~ —logT
7/, (t+h)—N(t)d 5 108

The centered moments are (by Fujii)

lf;-ﬂ (S(t e i S(t))”“ 4 — (2R)! +0(§)

A o T 2kE)
where
1 phlogT 1_cost
JERD S Sl 0<hk1

L (loglogT —log |[¢(1 +ih)|) 1< h<T

Thus if hlogT — oo, the moments converge to
the Gaussian moments, and so the distribution is

normal.

5 /
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What happens if hlog? = O(1)?
(2k)!

\

Then the main term, —r77, is of the same order as

the error term O(1/0).

Therefore, we cannot conclude from Fujii's

theorem that the distribution in normal. In fact,

the distribution is not normal, as it is discrete.

Define the linear statistic®
logT
Ny(t) = ; o (?(’m — f))

with the following conditions on ¢(x):
° o) < m as T — 00

e The Fourier transform, 3(1.:,), is compactly
supported.

880 N(t+ = 7) —N(t) = Ng(t) when ¢ is the indicator

log
function of an lntcr\ al [0, a).

-
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For technical reasons we change the average.
Instead of integrating over T to 2T we define

Webr = [ Nau DT
where ffom w(z) der =1 and @ is compactly
supported®.
Theorem 5. If supp o C (—2/m,2/m) then the
first m moments of N, converge as T — oo to
those of a Gaussian random variable with mean

| é@
and variance

o2 = f_ : min(ju], 1)(w)? du

*The previous average comes from setting w to be the
indicator function of the interval [0, 1]

5 /
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‘We need a smooth version of Riemann’s explicit
formula:

Lemma 6. Lel g € C*(R) have compact
support, and let h(r) = fjﬂmg(u}e””du. Then

i i
3" hla) = h=1) + h(3)
b /_ ) dr

-5 % (g(logn) + g(—logn))

n=1
where

o | ool 1
r) = SW(3 + 3ir) + 3¥(5 — 5ir) —logm
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Setting

f{)—aﬁ(
g(u) =

we have Ny(7) =

('F —17))
e—l?‘ -

logT ! log T)
Nu(T) + 85(7) where

N =5 [ 6 (%L e -n) ey

(%

logT i

{_ B ) (logT(_i —TJ)

Z o ilhn (logn)Qws(Tlogn}

= v
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Lemma 7. For ¢ with ¢ € C°(R) the mean
value of Ny is given by

<N¢)_’r = <E>T

~ [ s@e+0(g) T

Since

lim (N — (Ny)y) ")y = lim ((Se)™);
it is sufficient to show that the mth moment of S
is the same as that of a centered normal random
variable with variance o7,

5 /
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Note n;

-

((Sa)™)p = (

Multiplying out and integrating

_1 T
1 gT)

T

A(n;) ~ logn;
X TG

‘ﬂ‘}-—il LLE ERTE L jr 1

L e
X B(== ) € logn;)e T Lz closny
2m = : :

< T?/™=¢ since supp ¢ € (—2/m, 2/m).

Since @ has compact support, in order to get a
nonzero contribution we need

T

|ijlogn |~‘£i —

and thus 3 ¢;logn; =0.




\

Thus for T > 1, we find (taking into account that
w(0) = J w(z)de =1)

(Sa)™)r = ()"
A(n;) ~ logn,
¥ I

_J 1 &5 log ;=0

The only terms which do not vanish as T' — oo
are those where m = 2k is even, and there is a
partition {1,...,2k} = SU S’ into disjoint subsets
and a bijection o : § — S’ such that n; = n,;
and €; = —€,(;). There are k!(i’f") such terms, and

ke
" 2k) (1 A(n)* ~ logn..
(S)™)r = (k!} (logiT%: (:} ¢(1§§;)2)

— (2:!)! ([]m u@(u}zdu)k
- s
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(QUADRATIC L-FUNCTIONS: SYMPLECTIC

o Xa(n)
L{Sv Xd) = Z _E?IB_
n=1
where x4(n) = (%) is the Kronecker symbol.
Average over primitive y, with |d| < X.
Explicit formula:
log X o G
Zfﬁ( 2g ‘T.z) :f () d:t:—] d(u) du
Yu 4 —eR 0
2 o A(m) logm
Tk L i )¢(lo i

maél:l
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From work of Mike Rubinstein on the n-level
densities of the zeros L(s, xq)

Theorem 8.

Let D(X) be the set of primitive quadratic
characters xq with X/2 < |d| < X. If

supp ¢ € [—1/m, 1/m) then

1 logX Usp "
B, 2 (Z‘ﬁ( ) - “H)

ELDIX) N T

0 if m is odd
= k
(2H' (41”“2 P(u)? du) if m = 2k is even

s / $(x) dz — f¢(u

where
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CUSPIDAL L—FUNCTIONS: ORTHOGONAL

Let H}(N) be the set of all holomorphic cusp
forms which are newforms of weight k and level

N.
Fourier coefficients: ay(n).
Set Af(n) = aj(nr)n~k—1)/2,

The L-function associated with [ is

L(s, f) =Y As(n)n~".

n=1

It satisfies the functional equation mapping
s — 1 — s with root number ¢; = £1.

Therefore H; () splits into two disjoint subsets,
H(N)={f € H;(N):e; =+1} and
H (N)={fe H;(N):¢; =—1}.

5 /
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If Q is a function defined on f € H(N), denote
the average of () over Hf(N ) by

(QUN)x = FI(—}E”Z;WQU)

We let N — oc through the primes, with £ held
fixed.

For ¢ € C°(R), define the smooth counting
function

D(fi6) = Yo (M5 )
f

Here, «r runs through the non-trivial zeros of
L(s, f), and R is its analytic conductor (R = k*N
for these families).

‘We rescale the zeros by log /2 as this is the order
of the number of zeros with imaginary part less
than a large absolute constant.

5 /










