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INTRODUCTION We study nodal statistics of polynomial solu-
tions of a generalized Lamé differential equation:

A(z)y"(z) + 2B(z)y (z) + C(z)y(z) = 0, (1)
where A(z), B(x), G(z) are polynomials of degree N +1, N, N — 1 re-
spectively, and y(z) is a polynomial of degree K.

Definition. A solution of (1) is a pair (y(z), C(z)). Here y(z) is called
Heine-Stielijes pﬂiynum;'ui_ and C{z) is called Van Vleck polynemial
We shall assume that 4 has distinet roots (real or complex),
Alz) (z-omllz o)...(z ox)
and that
Blz) _ i ry
Alr)  Sr-o
where r; > 0 are positive real numbers, e.g. Biz) = A'(z).
A very important special case is when oy are all real, say

g < Oy < ... % EN- (2)

In that case the condition r; > 0 is equivalent to saying that the roots
B; of B(z) interlace the roots of A(z), i.e.

<<y <h<om<... <y <ay.
Heine (cf. [H]) proved that given A(x), B(z) there exists at most
N+ K- 1}
oV R = " — 1!
polynomial solutions [y, ) where y has degree K.
Stieltjes (cf. [S]) showed that in case (2) there exist exactly o(N, K)
solutions. In that case, Lamé DE (1) arises when one separates vari-

ables for spherical harmonics of degree 2K on SY in elliptic-spherical
coordinates (cf. [T1, T2, WW]). Those are coordinates

[lwg, ... un) oy <w <o)

Given & point (tg,... ,tx) € 5%, the coordinates u; are defined as the

roots the equation
L
Y —2— -0,
= u—ay

They are related to (tg, ... .tx) by the formula

T, (o — w)
TT7C0 {0y — )

2=

(13
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The Lam# harmonic ¢ in that coordinate system has the form

N
luy, ... uy) = [ vlw),
i=1
where () is a Heine-Stieltjes polynomial. It is an eigenfunction of N
commuting operators P, 0 <m < N — 1, given by
8 ., g1?
Pm = %SE{&'&,.“ _.LI:H] (E.‘E -

where 5% is the m-th symmetric polynomial in {ts, ,tx} {1}
P is the Laplacian on S,
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The zeros of the Heine-Stieltjes polynomial y correspond to nodal
surfaces of ¢ that are intersections of SV with elliptic cones
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ELECTROSTATIC INTERPRETATION OF ZEROS AND
THE WORK OF STIELTJES.

Let {zy,... ,2x} be the zeros of a Heine-Stieltjes polynomial y(z);
one can show ([Sz]) that z.-s are all distinct from o,-s and from each
other. The equation (1) evaluated at x; becomes Ay” + 2By = 0
or " (x:) /(24 (2;}) + Blz;)/A{x;}) = 0 which can be rewritten as the
so-called Niven equation

A 1 N
Tt =
.f=lz.f:;t-""='_’i Eﬁ*’"‘“’ ! &
that is valid for all i. It follows easily from (3) that all z;-5 must lie
in the conver hull CH(oy, ... ,ay). The same is true for the roots of
Van Vieck polynomials C(x).

In case ay < ... < oy, we see that all ©, must lie in one of the
intervals Jaj—y,05[,1 < j < N. Denote by [; the number of interval
containing the root z;:

i Ejor ol 1535 K. id}

We denote by 1 the K-tuple ({;, 15, ..., {g) It is easy tosee that the total
number of k-tuples with I={l;,... g} satishring Il < L € < ... <
|'||.l = N is l.'l.:|l.l.|.| L -"":."l.' i I Each :-I||'|| H-I:u|a-|1* |||'fi:|.-:':-\. i lr.-n_ll'e:'_rl.lru!.!a.l:l.'
describing the position of H-5 geros in |-'r...-- v|. We denote the set of
all configurations by E{N, K').

The following theorem is due to Stieltjes (5]}

Theorem 1. Given e configuration 1 € E(N, K, there erisis a TR LT
sodulion {ylx), Clxy) of (1) whose zeros sahisfy (4).

Proof. Let ¥ = (... Ex ). Tp < ... < e, Given a conlipuration
I i | ot ;
1= (1, ..., dg), define £} = T4} to be the set of -8 satisfving [4).
We regard -5 as moving particles with unit charge. and o.-5 as ficed
= 1 5 k. i d
particles with charge r, > 0, All the charges interact according to the
following ||'.l!JJ|'.'.'!.'4|:|!"| = T {Zij. ... O ) R 4 S N

N K
F . — T LFE = i g rr.
Vix, al b Il‘n[l..";‘.l'_,.') ! E-” I]I'L“(!.--I—UI.EJ (5

I-'l-_.llA il

It is easy to see that solutions of Niven equations {3) correspond to
critical points of (5).

We next see that V' is a smooth function defined on a connected
open set  of ;-5 (cf. (4)) and approaching infinity at the boundary
(the set where one of £;-s coincides with another or with one of a,-s).
Accordingly, V' must attain a minimum on £ which must be & solution
of (3). It is also easy to show unigueness, o.
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REGIMES
We assume that ag < ... < ay are all real and study the nodal
statistics of Heine-Stieltjes polynomials as N+ K — oo in the following
regimes:
& Thermodynamic regime: N — oo (dimension of the sphere in-
creases|; will be discussed by John Toth.
» Semiclassical regime: N fixed, K — oc (degree of the spherical
harmonic increases); discussed in the rest of the talk.
We remark that if A(z) and B(z)/# are monic then €'{x) has highest
coefficient equal to <K (K — 1+ 3). So, in the semiclassical limit the
highest coefficient of —Cy(z)/K? is asymptotic to 1.
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REAL SEMI-CLASSICAL REGIME: RESULTS OF MARTINEZ-
FINKELSTEIN AND SAFF.

We next summarize results due to Fedoryuk, Martinez-Finkelstein
and Saff ([MFS]) about the limiting density of H-S zeros in the semi-
classical limit (A(z), B(z) fixed). Let oy, 00 < ... < oy be the roots of
A. Consider a sequence of solutions (yx, Cx) of (1), and let 2,(K) <
x3(K) < ... < zg(K) be the roots of yx 5.1. the sequence of measures

K
g = 5 3 8(zi(K)) — dp
=1

as K — oo. Let ; denote the limiting proportion of roots in Jog_, ayf:
{4 2 25 (K) €los_y, 04}

B = pllog, o) = Jim 7
Then there exists a “limiting” V'V polynomial
. —Oglx) e
Jin g =@ =1l )

The limiting measure i is equal to

1 ‘ Oz
T _AE.':[:]::-#I
and is supported on the set where I' = {z Clz)/A(z) < 0} which
consists of /N intervals
Lcloyne), 1<ji<N.
with endpoints from the set

{ﬂﬂl van g KT gans :*I"H'—I}
The =;-s are determined by equations

o ‘G{r}
.E]TI fn,_. m dll'

The spectral density found in [MFS] can be integrated over the set
{id, 8, ... ,8y) : T8 =1} to produce the nodal set density for Lamé
harmonics on 5™ averaged over all (N, K) configurations. One ob-
tains a certain conformal multiple of the surface measure on V.

Here is an example for N = 2: the limiting VV is a linear monic
polynomial x — +, and the H-5 density is equal to

1 8,
'

lJ ~(5 1]
7\ [z - ao)(z — o )(z - oy
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E. Kritchevski [K] has numerically unfolded the H-5 zeros (for K =
3720,8, = 3/T) with respect to that density and looked at the nearest
neighbor spacing distribution. He found that it was converging to the
delta-measure at 1 (one can regard this as a generalization to H-S
polynomials of a known result for orthogonal polynomials, [Sz]).

umiskdeg rege e -0 e 1708
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COMPLEX SEMI-CLASSICAL REGIME: N =3

We finally discuss the case of complez a-s. In general, it is probably
true that for Lebesgue-a.a. o-s there exist exactly o{N, K solutions
of (1) of degree K. However, for N = 2 (so VV polynomial C'(z) has
degree 1), the roots of C' turn out to be equal to the eigenvalues of a
certain explicit tridiagonal (non-self-adjoint) (K +1) x (K +1) complex
matrix. We henceforth restrict curselves to the case N = 2,

Here is an example of all VV roots for K = 20, [K].

=ip @2 64 o8 B 01

It seems reasonable to make the following
Assumption 1. The roots of V'V polynomial concentrate on a branched
curve I' with 3 branches starting al oy, cey, .

Remark 2. We also nole that the branches seem lo be well approzi-
mated by bisectors of the angles of the triangle opoyoa.
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The corresponding H-S zeros are plotted below, [K]
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Suppose the limiting VV polynomial isx — 7,7y €T. Let [ lieon a
branch starting at oy, It seems reasonable to make the following
Assumption 2. The roots of the corresponding H-S polynomials con-
cendrate on o wnion of two disjoind curves 5 U 8y, where 5; has end-
points af op and v, and Sy has endpoints af oy and oa.

Making those two assumptions, E. Kritchevski [K] has derived a
Taylor expansion at oy of the branch of T starting at oy (by carefully
extending the argument of [MFS| to the complex case and using a very
nice trick). Let 8(%) denote the proportion of H-5 roots on the curve
&) ending at v. We assume that # changes monotonically with +, and
g0 We can use # to parametrize T

7 = 7(8), a0 = 7(0).
Let & = 8(v) be the inverse function.
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Proposition 3. Under Assumptions | and 2, the m-th derivative

E'[m:lh':l |‘;-=m
i3 equal to

—@m =1 s ( 1 )
{m—l]-!'l“‘l: / iz \f{z—m]{af—uz]

In particular, for m 1 we get

F(0) 1)  2y/(a0 — ai){ao — )

confirming Remark 2.
Finally, it seems reasonable (¢f. [EF]) to make the following

Conjecture 4. [nder Assumptions I and 2, zeros of H-S polynomials
corresponding to the V'V root v concentrate on the Stokes lines of the
#nd order eguation

[ {I . '1"}
El = = S 1.  — o, .
viz) (x — g)(z — o }(z — ay) viz)
We also expect suitable analogues of Proposition 3 and Conjecture
4 to hold in the general semi-classical complex case (more than three
¥-5).
Explanation: Let hy = (yx)' /yx be the logarithmic derivative of a
solution yy of (1). Then h satisfies Ricatti equation

A(Ry + hi) + Bhg + Cx =0, (6)

Hirarewver,

¥

helz) _ f‘ dpsg (w)

H suppuy & — 0
is the Borel transform of the measure pgp of H-8 zercs, and thus
hg/K = H = H(u), the Borel transform of the limiting measure

T8
Divide the Ricatti equation (6) by K* to get

he]’ 1 fAWy  Bhe\ _ Ck
*“[f +E(Tr*“fr)" K

The middle term is divided by K and so goes to zero, hence the LHS
converges to A(z)H{z)? as K — co. Accordingly, the RHS approaches
a limiting {monic!} polynomial C(z), and

Hip)? = C/A.
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After this, one can use Cauchy's integral formula to recover y from
H{p), and Assumptions 1 and 2 guarantee existence of suitable con-
tours.

LB
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