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A1. On Statistics

This talk concerns statistical calibration of portfolio credit risk

models under the real-world measure. We tacitly assume the model

is to be used for credit risk measurement and management purposes,

such as

• Calculation of credit VaR or expected shortfall,

• Calculation of shortfall contributions for allocation of risk capital.

Industry approaches to calibration of portfolio models have generally

not been formally statistical. There are good reasons for this, mainly

the lack of relevant, historical data, particularly for higher-rated

companies.
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Industry Calibration Approaches

Industry models generally separate the problems of estimating (i)

default probabilities and (ii) model parameters describing the

dependence of defaults.

1. Default probabilities are usually estimated by a historical default

rate for “similar” companies, where the similarity metric may be

based on ratings (CreditMetrics) or a proprietary measure like

distance-to-default (KMV).

2. Dependence is usually described by a macro-economic or

fundamental factor model. Parameters of factor models are often

simply “assigned” by economic argument or derived from factor

analyses of proxy variables (e.g. equity returns for asset value

returns in the Merton-style models).
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Ad Hoc Calibration and Model Risk

The ad hoc nature of some of the attempts to model dependence

raises the issue of model risk.

For example, in KMV/CreditMetrics, how confident are we that we

can correctly determine the size of the systematic component of risk

(loadings on the common factors)?

Changes to this part of model can have drastic effect on the tail of

portfolio loss distribution.

Our philosophy. As historical default and migration data improve in

quantity and quality over time, the use of formal statistical inference

will become more viable and should complement existing approaches.
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A2. On Dependence

Dependence between defaults is key issue in credit risk management.

• In large balanced loan portfolios main risk is occurrence of many

joint defaults – this might be termed extreme credit risk.

• Dependence between default critically affects performance of many

basket credit derivatives

Sources for dependence between defaults

• Dependence caused by common factors (eg. interest rates and

changes in economic growth) affecting all obligors

• Default of company A may have direct impact on default probability

of company B and vice versa because of direct business relations,

a phenomenon known as counterparty risk or contagion.
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Empirical Evidence I

Moodys’ annual default rates (defaulted companies/overall number of rated

companies) and changes in economic growth from 1920 – 1999; changes in

economic growth clearly affect default rates.
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Empirical Evidence II
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Standard and Poor’s default data from 1980 to 2000 show clear evidence of cycles;

we expect within-year and between-year dependence.
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A3. Literature

There are various strands in the literature on statistical analysis of

credit models.

• GLM analysis of migration count data using ordered probit model;

this extends logistic regression analysis of defaults. See, for

example, [Nickell et al., 2000] and [Hu et al., 2002].

• Markov chain methods for estimating rating transition matrices;

see, for example, [Lando, 2004], [Lando and Skodeberg, 2002]

and [Schuerman and Jafry, 2003]. Evidence for ratings momentum

generally contradicts the Markov assumption.

McNeil & Wendin, 2005 10



Literature II

• Models with latent structure to capture the dynamics of systematic

risk. An example is [Crowder et al., 2003] who use a two-state

hidden Markov structure to capture periods of high and low default

risk. See also [Gagliardini and Gouriéroux, 2004].

We essentially work in the GLM ordered probit/logit framework but

add random effects to capture default and migration dependence.

We incorporate the thinking of state space models by trying to make

our random effects dynamic.

The data we consider are repeated cross-sectional data, which are

readily available from the rating agencies.
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B. Modelling Dependent Defaults

1. Dependence Through Mixing

2. From Linear Models to GLMMs

3. Fitting GLMMs

4. Example: Simplified KMV/CreditMetrics

5. Example: Model with Economic Cycle Effect
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B1. Dependence Through Mixing

Consider a set of m obligors. Let Y1, . . . , Ym be their default

indicators for the next time period, i.e. for all i ∈ {1, . . . ,m}

Yi =

{
1 if obligor i defaults in the next time period

0 otherwise.

For the time being, we assume that our set of obligors is homogenous

so that the probability law of each Yi is identical. We assume

Yi |Q
iid∼ Be(Q), i = 1, . . . ,m,

where Q is a mixing variable with distribution on [0, 1].

McNeil & Wendin, 2005 13



Distribution of Defaults

The conditional distribution of Y = (Y1, . . . , Ym)′ is given by the

conditional independence property:

P (Y = y |Q = q) =
m∏

i=1

qyi(1− q)1−yi, y ∈ {0, 1}m.

The unconditional distribution of Y is obtained by integrating out Q:

P (Y = y) =
∫

P (Y = y |Q = q) dG(q).

This two-stage stochastic model creates dependence among the

responses Y1, . . . , Ym.
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Statistical evidence for dependence

Consider the two cases Q = q0 = const vs. Q ∼ β(a, b). Since

Q = const is a degenerate special case of Q ∼ β(a, b), we may use a

likelihood-ratio test to test the hypothesis

H0 : the model Q = q0 is adequate.

Under H0, we have

2 log

(
L(â, b̂)
L(q̂0)

)
∼ χ2

1.

For e.g. rating class on earlier slide, we have P-value 7.0 e-12.
The null hypothesis H0 is clearly rejected.
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A more general mixing structure

Conditional on random effects b we assume

Yi |b ∼ Be(pi(b)), i = 1, . . . ,m, where (1)

pi(b) = g (x′iβ + z′ib) .

• g(·) is a monotone function, typically a mapping from R to (0, 1)
like a distribution function (e.g. g = Φ).

• xi and zi are explanatory variables (covariates) for ith obligor,

such as indicators for rating category or sector, or firm-specific

information from balance sheet.

• β are unknown parameters (including generally an intercept).
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B2. From Linear Models to GLMMs

Linear Model
Y = Xβ + ε

• Y = (Y1, . . . , Ym)′ is (multivariate) Gaussian,

• E(Yi) = µi = x′iβ,

• V ar(Y) = σ2Im×m.

This model is not suitable for binary and count data.
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Generalized Linear Model (GLM)

• (Y1, . . . , Ym) are independent following the same exponential family

distribution (e.g. Bernoulli, Poisson, Normal),

• E(Yi) = µi with g(µi) = x′iβ,

• V ar(Yi) = kiv(µi).

g(·) is the link function, v(·) is the variance function and ki is a

constant.

GLMs offer interesting possibilities for e.g. count data, but the

responses Y1, . . . , Ym are independent.
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Generalized Linear Mixed Model (GLMM)

• Given a realisation of b, (Y1, . . . , Ym) are conditionally independent

following the same exponential family distribution. b is a random

effect following a distribution of our choice. We denote by θ any

hyperparameters of b,

• E(Yi |b) = µi with g(µi) = x′iβ + z′ib,

• V ar(Yi |b) = kiv(µi).

By integrating out the effect of b, the responses Y1, . . . , Ym are no

longer independent.

g(µi) = fixed effects + random effects.
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GLMM as DAG (Directed Acyclic Graph): one unit
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Multiple Units

To estimate the random effects and the parameters of their

distribution (so-called hyperparameters) we need data corresponding

to multiple realisations of the random effect.

We introduce the idea of units. In our application units will

correspond to years. Classical examples: patients in hospital where

hospital is unit; children in schools where school is unit.

In each unit we have a random effect bt generating the dependence

for all observations on that unit. In our applications bt can be

thought of as representing stochastic state of economy in year t.

Yti |bt ∼ Be(pti(bt)), i = 1, . . . ,mt, t = 1, . . . , n, where

pti(bt) = g (x′tiβ + z′tibt) .
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GLMM as DAG: several independent units
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GLMM as DAG: several serially dependent units
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B3. Fitting GLMMs

Independent random effects
The unconditional density or mass function of Yt = (Yt1, . . . , Ytmt)

′:

f(yt |β,θ) =
∫

Rp

(
mt∏
i=1

P (Yti = yti |bt,β)

)
fbt(bt |θ) dbt,

where p = dim(bt) and fbt(bt|θ) is the density of bt. The likelihood

function with b1, . . . ,bn independent is

L(β,θ |observed data) =
n∏

t=1

f(yt |β,θ). (2)

There is no between-year dependence.
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Fitting GLMMs

Dependent random effects
Let b1, . . . ,bn have joint density fb(b1, . . . ,bn |θ). The likelihood

function L(β,θ |observed data) now takes the form∫
· · ·
∫ n∏

t=1

mt∏
i=1

P (Yti = yti |bt,β)fb(b1, . . . ,bn |θ) db1 · · ·dbn,

and in particular numerical integration over Rn×p, where

p = dim(bt).

The high-dimensional integrals make standard maximum likelihood

difficult.
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Fitting GLMMs

Bayesian Statistics
We distinguish between observed quantities D := (xt, zt,yt)n

t=1 and

unobserved quantities ϑ := (θ,β,b1, . . . ,bn).

The prior distribution p(ϑ) expresses a state of knowledge (or

ignorance) about the unobserved elements ϑ before the data D are

obtained.

Inference in our model is based on the posterior distribution p(ϑ |D)

p(ϑ |D) =
p(D |ϑ)p(ϑ)

p(D)
=

p(D |ϑ)p(ϑ)∫
p(D |ϑ)p(ϑ) dϑ

.

Problem: finding p(ϑ |D)!
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Fitting GLMMs

Markov Chain Monte Carlo (MCMC) Methods
Assume we want to simulate from a (multivariate) distribution p(x).

Idea: Construct an ergodic Markov chain with p as its stationary

distribution. Regard a sample of the Markov chain (possibly after a

certain burn-in) as a sample from p. Constructing such a Markov

chain turns out to be surprisingly simple:

◦ Metropolis-Hastings algorithm

◦ Gibbs sampler (special case)

MCMC can be used to simulate p(ϑ |D) even in complex cases.

[Robert and Casella, 1999, Clayton, 1996]
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B4. CreditMetrics-style model

We fit a model to S&P default data (ratings classes A, BBB, BB, B

and C) with a scalar random effect bt in each year and no serial

dependence.

Yti |bt ∼ Be(pti(bt)), i = 1, . . . ,mt, t = 1, . . . , n, where

pti(bt) = Φ
(
µr(t,i) + bt

)
, bt ∼ N(0, σ2),

where r(t, i) gives rating of firm i in year t. Fixed effects

β = (µ1, . . . , µk)′, hyperparameter θ = σ.

This model can be fitted by Gibbs sampling or by brute-force

maximum likelihood (integrating out random effects numerically)

[Frey and McNeil, 2003, McNeil and Wendin, 2003].
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Results

From fitted model we infer estimates of default probabilities as well

as within-group and between-group default correlations.

Parameter A BBB BB B CCC

µr (mean) -7.84 -6.13 -4.64 -2.94 -1.53

µr (median) -7.79 -6.11 -4.62 -2.93 -1.52

s.e.(µr) 0.429 0.477 0.443 0.433 0.436

σ (mean) 0.158 (median) 0.0633

s.e.(σ) 0.380

πr (mean) 0.0004 0.0022 0.0099 0.0542 0.2220

πr (median) 0.0004 0.0022 0.0099 0.0536 0.1986

πr (ML) 0.0004 0.0022 0.0098 0.0503 0.2066

πr stands for implied estimate of default probability in rating group r based on

fitting of a 5-group model to S&P data
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Results II

Within and between group correlations

ρ
(r,s)
Y A BBB BB B C

A 0.00022 0.00047 0.00103 0.00166 0.00256

BBB 0.00047 0.00103 0.00223 0.00361 0.00564

BB 0.00103 0.00223 0.00484 0.00791 0.01226

B 0.00166 0.00361 0.00791 0.01303 0.02048

C 0.00256 0.00564 0.01226 0.02048 0.03270

Implied estimates of within-group and between-group default correlations based on

fitting of a 5-group model to S&P data
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B5. Model with Economic Cycles

We give the random effects (bt) an autoregressive structure

bt = αbt−1 + εt, εt ∼ N(0, σ2),

which introduces an additional hyperparameter α.

For simplicity consider a single homogeneous group and write

Mt =
∑mt

i=1 Yti for the number of defaults in year t. We would like

to use the model predictively to say something about Mn+1, the

number of defaults in the next year

period. [McNeil and Wendin, 2003]
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DAG Representation of Model
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Here, the unknowns are ϑ = (θ, b1, . . . , bn, bn+1,Mn+1)′.
MCMC techniques simulate the posterior distribution of all these

quantities, although only θ and Mn+1 are of prime interest.
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Posterior distributions of µ, σ and α
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Unconditional vs. Conditional distribution for Mn+1
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C. Modelling Dependent Migrations

1. Migration Models in GLMM Framework

2. Example
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C1. The GLMM Framework + Gibbs Sampling

The statistical framework we have chosen allows relatively

complicated models, where for example:

• Random effects capture common economic effects on rating

migrations for several firms;

• Individual covariates, including current and possibly previous

ratings, modify the migration risk of each firm;

• Serially dependent random effects can capture economic cycles.
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Migration Models in GLMM Framework

Let S1, . . . , Sm be random variables represent the rating classes of m

obligors during the “next time period”. These take values on a scale

of increasing credit quality {0, 1, . . . , k} where 0 represents default.

We can generalize the idea in (1). Conditional on b we assume that

S1, . . . , Sm are independent and multinomially distributed so that for

r ∈ {0, 1, . . . , k}
P (Si = r | b) = pir(b)

for some functions pir(b) such that

pi0(b) + pi1(b) + · · ·+ pik(b) = 1.
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Linking to covariates

The conditional migration probabilities are related to covariates and

random effects by assuming that for r ∈ {0, 1, . . . , k}

P (Si ≤ r |b) =
r∑

j=0

pij(b) = g
(
µrl(i) + x′iβ + z′ib

)
,

where the µrl are threshold parameters for a firm with current rating

l and satisfy µ0l ≤ · · · ≤ µkl for all l. The xi are additional

covariates other than rating.

The probability that obligor i migrates to state r conditional on b is

pir(b) = g
(
µrl(i) + x′iβ + z′ib

)
− g

(
µ(r−1)l(i) + x′iβ + z′ib

)
,

where µ−1 = −∞.
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Interpretation as Asset Value Model

This formulation links very naturally to the structural model

approach to credit risk. Suppose g = Φ and let Vi represent be a

standard normally distributed variate representing standardized asset

value of firm i. Then conditional on b

{Si = r} =
{
Vi ∈

(
µ(r−1)l(i) + x′iβ + z′ib, µrl(i) + x′iβ + z′ib

]}
.

The required asset range for a rating r for a company with current

rating l(i) is thus modified by additional covariates xi and the state

of the economy represented by b.
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Multi-Period Data

The data come in the form of m rating panels (Sit)t∈Ti
where Ti is

a set of times for which ratings are available for firm i. (We may

well have the problem that these differ from firm to firm and that

default is an absorbing state.)

A multi-period model would be of the form

P (Sit ≤ r |bt) = g
(
µrl(i) + x′tiβ + z′tibt

)
,

where the random effects b1, . . . , bn could be either iid or serially

correlated as before.

Fitting in either case can be achieved by MCMC methods.
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C2. Practical Example

We consider a simple model where

P (Sit ≤ r |bt) = g
(
µrl(i) + bt

)
,

for iid random effects satisfying bt ∼ N(0, σ2) . Thus in this model

the only covariate determining the transition probabilities is current

rating.

We use the logit link function, i.e. the df of the logistic distribution

g(x) = (1 + e−x)−1. We have a matrix of thresholds to estimate as

well as σ2. As before we use Standard and Poor’s yearly default and

migration data. [Wendin and McNeil, 2004]

McNeil & Wendin, 2005 41



Parameter Estimates
µrl (l, r) D CCC B BB BBB A AAA

−41.89 −29.98 −17.97 −8.76 −6.90 −5.29 −2.71
AAA

(7.71) (9.17) (7.69) (1.27) (0.53) (0.24) (0.09)

−9.87 −8.21 −6.79 −6.33 −5.01 −2.50 5.06
AA

(1.31) (0.63) (0.32) (0.26) (0.15) (0.07) (0.15)

−8.01 −7.73 −6.04 −4.92 −2.77 3.78 7.34
A

(0.42) (0.36) (0.17) (0.11) (0.07) (0.08) (0.33)

−6.11 −5.58 −4.43 −2.83 2.95 5.89 8.24
BBB

(0.22) (0.17) (0.11) (0.07) (0.07) (0.20) (0.62)

−4.56 −3.86 −2.26 2.58 5.27 7.13 8.53
BB

(0.13) (0.10) (0.07) (0.07) (0.18) (0.43) (0.81)

−2.80 −2.26 2.66 4.74 5.49 6.99 14.82
B

(0.07) (0.07) (0.07) (0.14) (0.19) (0.39) (3.08)

−1.13 1.85 3.43 4.42 5.70 7.38 8.38
CCC

(0.11) (0.13) (0.23) (0.36) (0.65) (1.32) (1.70)

0.235
σ

(0.045)

Table containing parameter estimates and standard errors obtained

by Gibbs sampling.

McNeil & Wendin, 2005 42



The Implied Migration Probabilities

l\r AAA AA A BBB BB B CCC D

AAA 9.36 e-01 5.89 e-02 4.11 e-03 8.73 e-04 1.61 e-04 5.75 e-08 7.41 e-11 4.97 e-16
AA 6.45 e-03 9.16 e-01 7.07 e-02 4.97 e-03 6.64 e-04 8.79 e-04 2.25 e-04 5.32 e-05
A 6.66 e-04 2.22 e-02 9.17 e-01 5.29 e-02 5.02 e-03 1.97 e-03 1.23 e-04 3.42 e-04

BBB 2.72 e-04 2.57 e-03 4.78 e-02 8.92 e-01 4.51 e-02 8.23 e-03 1.60 e-03 2.27 e-03
BB 2.04 e-04 6.18 e-04 4.42 e-03 6.66 e-02 8.32 e-01 7.49 e-02 1.06 e-02 1.07 e-02
B 3.77 e-07 9.41 e-04 3.25 e-03 4.68 e-03 5.80 e-02 8.37 e-01 3.81 e-02 5.85 e-02

CCC 2.37 e-04 4.01 e-04 2.77 e-03 8.84 e-03 1.98 e-02 1.06 e-01 6.15 e-01 2.47 e-01
D 0 0 0 0 0 0 0 1

• Since the migrations of two companies in the same time period

are not independent we can also calculate migration correlations,

or upgrade and downgrade correlations between companies; this

generalizes the concept of default correlation.

• The model may be used to estimate the distribution of ratings for

a particular cohort of firms in the next time period, or the financial

loss distribution associated with the change in rating composition.
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