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Background on proportional transaction costs A\

e Magill & Constantinides, J. Economic Theory, 1976.

Proportional transaction costs into Merton’s optimal consumption model.

e Hodges & Neuberger, Rev. Futures Markets, 1989.

Option pricing in the presence of proportional transaction costs.

e Constantinides, J. Political Economy, 1986.
Numerical computation of liquidity premium; unable to compute for A
below 50 basis points.

e Fleming, Grossman, Vila & Zariphopoulou, 1990.
In model with consumption at final time only, found liquidity premium
O(N¥3).

e Davis & Norman, Math. Operations Research, 1990.

Rigorous treatment of Magill/Constantinides model.



e Shreve & Soner, Ann. Applied Probability, 1994.

Viscosity solution analysis of Magill/Constantinides model. Found lig-
uidity premium O(A?/3).

e Whalley & Wilmott, Math. Finance, 1997.

Formal asymptotic expansion in powers of A3 for option pricing problem.

e Janecek & Shreve, Finance and Stochastics, 2004.

Viscosity solution derivation of first two terms in asymptotic expansion
of value function.

e Rogers, Mathematics of Finance, 2004.
Simple heuristic probabilistic explanation of O(A
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Futures Trading Model
(Mike Harrison: “Work on the simplest problem you don’t understand.”)

e Futures price: F(t) = F(0) + at + cW(t).
e Number of futures contracts held: Y (t) = L(t) — M (t).

e Cash in money market:

dX(t) =Y (t)dF(t) — AN(dL(t) + dM(t)) + rX(t) dt — c(t) X (¢) dt.

Introduce trading proportional to wealth:
dL(t) = X (t—)dl(t), dM(t)= X(t—)dm(t).
Then

dY ()
dX (1)

X(t—)(de(t) — dm(1)),
Y(t)(adt+odW(t) — AX(t—)(dl(t) + dm(t))
+X () (r — c(t)) dt.

Parameter assumptions:

a>0 o>0 r>0 A>0.



e Solvency region: S 2 {(:I:,y) x— Ay > 0,2+ \y > O}.
e Utility function:

U,(C) A ﬁC’l_p ifp>0,p+#1,
P logC  ifp=1.

e Value function:
v(x,y) 2 sup E/ e MU, (c()X(t)) dt Y(z,y) € S.

{m,c 0

e Homotheticity: For v > 0,
oy, yy) = v Po(xy) o ifp>0,p#£L
T8Y U(az,y)—%%logv if p=1.
e Hamilton-Jacobi-Bellman equation:
1 -
min {ﬁv — (rx + ay)v, — 502y2vm — Up(vy), My — vy, Avg + vy} =0,

where

~ o~

U,(C) 2 max {U,(C) — CC}.
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Simplification for this presentation: 0 < p < 1.

Zero transaction cost:

If A were zero, the value function would be
1

vo(x) = ——A P2 P VW >0,
lL—=p
where ,
qaB-rl—p) o(l-p
p 20°p?
must be assumed to be positive. The optimal investment proportion is
Y () _gA Q
Xt o

The optimal consumption proportion is ¢(t) = A.



Investment proportion

A Y(t)
o2

HJB equation shows that optimal consumption is a function ¢ (6(t)) of 6(¢).
This function is a constant plus O(\).
Evolution of 0(%):
do(t) = 0(t)(—r+c(0(t)) +ab(t) + o°0*(t)) dt — ob>(t) AW (2)
+(1+X0(1)) de(t) — (1 — NO(t)) dm(t). (1)

Optimal 6(¢) is a doubly-reflected diffusion in the interval |21, z5|. The drift
and diffiusion are bounded uniformly in .



Investment proportion

A Y()
) = 5

HJB equation shows that optimal consumption is a function ¢ (6(t)) of 6(¢).
This function is a constant plus O(\).

Evolution of 6(¢):
do(t) = 0(t)( —r+c(0(t)) +ab(t) + o*6°(t)) dt — ob>(t) dW (t)
+(1+X0(1)) d(t) — (1 — NO(t)) dm(t). (1)

Optimal 6(¢) is a doubly-reflected diffusion in the interval |21, 25]. The drift
and diffiusion are bounded uniformly in A.

Method of analysis
e Fix a Lipschitz function ¢(-), and “small” positive numbers w; and ws.

e Let O(t) be given by (1) with reflection occuring at the boundaries of

0(1 — wq), 6(1 4+ woy)].

e We estimate the cost associated with this consumption and investment
strategy.



Decomposing the loss

c(+), wy > 0 and we > 0 given. Let 6(-) be given by (1). Choose also a
constant ¢ > 0. Define three processes, all with initial condition 1.

Process with investment ratio # and paying no transaction cost:

dXo(t) = Xo(t) [(r — ¢+ aB) dt + 08 AW (t)].

Process with investment ratio () and paying no transaction cost:

dX1(t) = X1(t) [(r — ¢+ ab(t)) dt + ab(t) dW (1)].

Process with investment ratio 6(-) and paying transaction cost:

dXo(t) = Xo(t) [(r = c+ af(t)) dt + o0(t) dW (£)—dL(t) + dmi(t))].

For 7 = 1,2, 3, define u; 2 E [~ e 7U,(cX;(t)) dt.



Decomposing the loss

c(+), wy > 0 and we > 0 given. Let 6(-) be given by (1). Choose also a
constant ¢ > 0. Define three processes, all with initial condition 1.

Process with investment ratio # and paying no transaction cost:

dXo(t) = Xo(t) [(r — ¢+ af) dt + o8 dW (1)].

Process with investment ratio #(-) and paying no transaction cost:

dX1(t) = X1(t) [(r — ¢+ ab(t)) dt + ob(t) AW (1)].

Process with investment ratio 6(-) and paying transaction cost:
dX5(t) = Xo(t) [(r — c+ ad(t)) dt + o0(t) dW (t)—A(dL(t) + dm(t))].

For 7 = 1,2, 3, define u; 2 E [~ e 7U,(cX;(t)) dt.
e Loss due to displacement uy — uq increases with w; and ws.
e [.oss due to transaction u; — us decreases with wy and ws.
e We choose w; and ws to balance these marginal losses.
e At the O(\) level of accuracy, ¢(-) is irrelevant.

e After optimizing over wy and wsy, we optimize over c.
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Theorem 1 The displacement loss is

—9
wuop(l — p)o?
Uy — Uy = op(l —p) (w?

6(pA+ 1 —p)c) w] — wiwy + ws) —|—O((w1 + wo) )



Theorem 1 The displacement loss is
uop(l — p)02§2
6(pA+ (1 —p)e)

IDEA OF PROOF:
Xo(t) = exp { (7“ —c+afll — %(1252> t+ agW(t)} :

Xy(t) = exp { /0 t (7" _ e+ af(u) — %cﬂe%u)) du + /O ob(u) dW(u)} |

A trick learned from Chris Rogers shows

EX, P(t) = EX, (t) - Eexp {(1 — p)a/o/ (0(uw) — 0) dW (u)
1

_§<1 — p)o? /Ot (0(u) — 5)2du},

(wi — wiws + w3) + O((wy + ws)?).

Up — Uy =

where

W) 2 W(t) — (1 — p)obt

1s a Brownian motion under .



Set

10 2 (1=p)o [ (0tw) =)W (w
Rit) 2 50=p)o® [ (000~ du
Then
Eexp (I(t)+ R(t)) = E [1 + I(t) + R(t) + %] “(t)+ I(t)R(t) + %Rz(t)
EY %(m) L R(1)"

E B[?(t)] ~ (1—p2o? /0 B (B(w) — B du.

If 0(u) were uniform on [0(1 — wy), 8(1 + w,)], then

. _ 1 O(1+wo) _ _
E(0(u) — 0)° = = / (x — 0)* dx 62(10% — wiwy + w3).
O(wy + wa) Ja(1—uy)

10



In fact, O(u) is almost uniform and
E(6(u) — 0)° = 0" (w? — wyws + wl) + O((wy + wy)?).

One can use the maximal martingale inequality and Holder’s inequality to
show the other terms are also O ((wy + w»)?).

11



Theorem 2 The transaction loss 1s

3
ug(1 — p)o?6 A ( A2 )
— Uy = : O\ + O .
e pA+(1—p)c w1+w2+ (A)+ (wy + wy)?
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Theorem 2 The transaction loss 1s

—3
ug(1 — p)o6 A ( A2 )
: O\ + O .
pA+ (1 —p)c w1+w2+ (A)+ (wy + wy)?

Uy — Uy =

IDEA OF PROOF:

Xi(t) = exp { /O t (7“ —c+af(u) — %&ew) du + /O t ae<u>dw<u>} ,
Xo(t) = Xq(t) exp {=A((t) + m(t)) }.

Therefore,
X, () = Xy () = Z(OAW)Y (1),

where

Z(t) = exp {(1 _ plo /0 () W () — %(1 _ )2 /O 92() du} |

A(t) = exp {(1 — ) /Ot <r —c+ af(u) — %pa%%u)) du} :
Y(t) = 1—exp{=X1—p) (L) +m())}.

A(t) is nearly deterministic. Task is to estimate Y (¢) under the measure
induced by Z.

12



Estimation of Y(t)

Y(t) = 1 —exp {—)\(1 —p) (K(t) -+ m(t))}
= M1 —=p)((t) +m(t)) — %)\2(1 —p)?(L(t) + m(t))ze—f“).

For a doubly reflected Brownian motion on [#(1 —wy), (1 4+ ws)], the sum
of the local times at the boundaries has expectation
t

0wy + ws)

Here we have
AL = pE(EH) +m(t) = L=PE Ao

0 w1 + Wo

The second-order term has expectation

¢ ((wl j:2102)2> |

(Easy when 0 < p < 1; requires estimates obtained from solving a control
problem when p > 1.)

13



Putting the pieces together.

The loss from displacement and transaction is

1— )20 [ M\
Uy — Uy = S ( +g<w5w1wz+w3)>

pA+ (1 —p)e\ w + ws

+O(A)+O((w1+w2)3)+0< \ 2).

(w1 -+ UJQ)

Minimization of

A0 P, 5
+ = (w7 — wjwo +w
w1 + W9 6< ! b 2>
over wi and ws results in

14



Theorem 3 (Maximization over investment strategies) For ev-
ery n € (0,3), we have

(1 - p>02§8/3 9 /3 \2/3
pA+ (1 —p)c \ 32

Theorem 4 (Maximization over constant consumption) The
right hand side of (2) depends on c in the term uy and also in the term

pA+ (1 —p)e. The mazimum over c is attained by ¢ = A + O(A\/?)
and this maximum value 1S

sup  us =ug |1 —

0<wi,wo<A"

+ON%. (2)

02§8/3 op e 2/3 5/6
wl(l) =~ (32) A28 O(N9),
The leading term in the loss due to transaction and displacement is
2753

1/3
9p / )\2/3
AT \ 32 |

This is in fact the loss for all p > 0, not just for 0 < p < 1.

15



Bold Conjecture (stochastic volatility)
do*(t) = k(co*(t)) dt + v(o°(t)) dB(t),
where B is independent of WW.

For A = 0, optimal portfolio is % = 0(t) 2

Expect for A > 0, we should keep 0(t) SRIOEH 0(t) (1 —wi(t)),0t) (1 +wa(t))].

Diffusion for (t) — 6(t) is now D(t) = 0254(15) +

A
0(t) (wi(t) + wa(t))

Expect 0(t) to be approximately uniform in the interval, and the rate of
loss of utility from displacement as before:

Lo — o208 (0) (wR(t) — wi(hwslt) +w3(2).

§

Rate of utility loss from transaction should be (1 — p)D(t) -

3 /_ 2 3
Balance marginal losses to get wq(t) = wsy(t) = (%@) (92(15) + 7 <O(t))) A3
p
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