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Background on proportional transaction costs λ

• Magill & Constantinides, J. Economic Theory, 1976.

Proportional transaction costs into Merton’s optimal consumption model.

• Hodges & Neuberger, Rev. Futures Markets, 1989.

Option pricing in the presence of proportional transaction costs.

• Constantinides, J. Political Economy, 1986.

Numerical computation of liquidity premium; unable to compute for λ
below 50 basis points.

• Fleming, Grossman, Vila & Zariphopoulou, 1990.

In model with consumption at final time only, found liquidity premium
O(λ2/3).

• Davis & Norman, Math. Operations Research, 1990.

Rigorous treatment of Magill/Constantinides model.
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• Shreve & Soner, Ann. Applied Probability, 1994.

Viscosity solution analysis of Magill/Constantinides model. Found liq-
uidity premium O(λ2/3).

• Whalley & Wilmott, Math. Finance, 1997.

Formal asymptotic expansion in powers of λ
1
3 for option pricing problem.

• Janeček & Shreve, Finance and Stochastics, 2004.

Viscosity solution derivation of first two terms in asymptotic expansion
of value function.

• Rogers, Mathematics of Finance, 2004.

Simple heuristic probabilistic explanation of O(λ
2
3) effect.
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A rigorous but not so simple probabilistic explanation of O(λ
2
3).

(i) Builds on a change of measure idea introduced by Rogers 2004.

(ii) Attempt to escape the Markov bonds.

(iii) Probability is more fun.
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Futures Trading Model

(Mike Harrison: “Work on the simplest problem you don’t understand.”)

• Futures price: F (t) = F (0) + αt + σW (t).

• Number of futures contracts held: Y (t) = L(t) − M(t).

• Cash in money market:

dX(t) = Y (t) dF (t) − λ
(
dL(t) + dM(t)

)
+ rX(t) dt − c(t)X(t) dt.

Introduce trading proportional to wealth:

dL(t) = X(t−) d`(t), dM(t) = X(t−) dm(t).

Then

dY (t) = X(t−)
(
d`(t) − dm(t)

)
,

dX(t) = Y (t)
(
α dt + σdW (t)

)
− λX(t−)

(
d`(t) + dm(t)

)

+X(t)
(
r − c(t)

)
dt.

Parameter assumptions:

α > 0, σ > 0, r > 0, λ > 0.
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• Solvency region: S
∆
=
{
(x, y) : x − λy > 0, x + λy > 0

}
.

• Utility function:

Up(C)
∆
=

{ 1
1−pC

1−p if p > 0, p 6= 1,

log C if p = 1.

• Value function:

v(x, y)
∆
= sup

`,m,c
E

∫ ∞

0

e−βtUp

(
c(t)X(t)

)
dt ∀(x, y) ∈ S.

• Homotheticity: For γ > 0,

v(γx, γy) =

{
γ1−pv(x, y) if p > 0, p 6= 1,
v(x, y) + 1

β log γ if p = 1.

• Hamilton-Jacobi-Bellman equation:

min

{
βv − (rx + αy)vx −

1

2
σ2y2vxx − Ũp(vx), λvx − vy, λvx + vy

}
= 0,

where
Ũp(C̃)

∆
= max

C>0

{
Up(C) − CC̃

}
.
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Simplification for this presentation: 0 < p < 1.

Zero transaction cost:

If λ were zero, the value function would be

v0(x) =
1

1 − p
A−px1−p ∀x ≥ 0,

where

A
∆
=

β − r(1 − p)

p
−

α2(1 − p)

2σ2p2

must be assumed to be positive. The optimal investment proportion is

Y (t)

X(t)
= θ

∆
=

α

σ2p
.

The optimal consumption proportion is c(t) ≡ A.
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Investment proportion

θ(t)
∆
=

Y (t)

X(t)

HJB equation shows that optimal consumption is a function c
(
θ(t)
)

of θ(t).
This function is a constant plus O(λ).

Evolution of θ(t):

dθ(t) = θ(t)
(
− r + c

(
θ(t)
)

+ αθ(t) + σ2θ2(t)
)
dt − σθ2(t) dW (t)

+
(
1 + λθ(t)

)
d`(t) −

(
1 − λθ(t)

)
dm(t). (1)

Optimal θ(t) is a doubly-reflected diffusion in the interval [z1, z2]. The drift
and diffiusion are bounded uniformly in λ.
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(
1 − λθ(t)

)
dm(t). (1)

Optimal θ(t) is a doubly-reflected diffusion in the interval [z1, z2]. The drift
and diffiusion are bounded uniformly in λ.

Method of analysis

• Fix a Lipschitz function c(·), and “small” positive numbers w1 and w2.

• Let θ(t) be given by (1) with reflection occuring at the boundaries of
[θ(1 − w1), θ(1 + w2)].

• We estimate the cost associated with this consumption and investment
strategy.
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Decomposing the loss

c(·), w1 > 0 and w2 > 0 given. Let θ(·) be given by (1). Choose also a
constant c > 0. Define three processes, all with initial condition 1.

Process with investment ratio θ and paying no transaction cost:

dX0(t) = X0(t)
[
(r − c + αθ) dt + σθ dW (t)

]
.

Process with investment ratio θ(·) and paying no transaction cost:

dX1(t) = X1(t)
[(

r − c + αθ(t)
)
dt + σθ(t) dW (t)

]
.

Process with investment ratio θ(·) and paying transaction cost:

dX2(t) = X2(t)
[(

r − c + αθ(t)
)
dt + σθ(t) dW (t)−λ(d`(t) + dm(t)

)]
.

For i = 1, 2, 3, define ui
∆
= E

∫∞

0 e−βtUp

(
cXi(t)

)
dt.
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.

For i = 1, 2, 3, define ui
∆
= E
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0 e−βtUp

(
cXi(t)
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• Loss due to displacement u0 − u1 increases with w1 and w2.

• Loss due to transaction u1 − u2 decreases with w1 and w2.

• We choose w1 and w2 to balance these marginal losses.

• At the O(λ) level of accuracy, c(·) is irrelevant.

• After optimizing over w1 and w2, we optimize over c.
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Theorem 1 The displacement loss is

u0 − u1 =
u0p(1 − p)σ2θ

2

6
(
pA + (1 − p)c

)(w2
1 − w1w2 + w2

2) + O
(
(w1 + w2)

3
)
.
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Theorem 1 The displacement loss is

u0 − u1 =
u0p(1 − p)σ2θ

2

6
(
pA + (1 − p)c

)(w2
1 − w1w2 + w2

2) + O
(
(w1 + w2)

3
)
.

Idea of Proof:

X0(t) = exp

{(
r − c + αθ −

1

2
σ2θ

2
)

t + σθW (t)

}
,

X1(t) = exp

{∫ t

0

(
r − c + αθ(u) −

1

2
σ2θ2(u)

)
du +

∫ t

0

σθ(u) dW (u)

}
.

A trick learned from Chris Rogers shows

EX1−p
1 (t) = EX1−p

0 (t) · E exp

{
(1 − p)σ

∫ t

0

(
θ(u) − θ) dW (u)

−
1

2
(1 − p)σ2

∫ t

0

(
θ(u) − θ)2 du

}
,

where
W (t)

∆
= W (t) − (1 − p)σθt

is a Brownian motion under E.
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Set

I(t)
∆
= (1 − p)σ

∫ t

0

(
θ(u) − θ) dW (u),

R(t)
∆
=

1

2
(1 − p)σ2

∫ t

0

(
θ(u) − θ)2 du.

Then

E exp
(
I(t) + R(t)

)
= E

[
1 + I(t) + R(t) +

1

2
I2(t) + I(t)R(t) +

1

2
R2(t)

]

+E

∞∑

n=3

1

n!

(
I(t) + R(t)

)n
.

The interesting terms are

ER(t) =
1

2
(1 − p)σ2

∫ t

0

E
(
θ(u) − θ)2 du,

E

[
1

2
I2(t)

]
= (1 − p)2σ2

∫ t

0

E
(
θ(u) − θ)2 du.

If θ(u) were uniform on [θ(1 − w1), θ(1 + w2)], then

E
(
θ(u) − θ)2 =

1

θ(w1 + w2)

∫ θ(1+w2)

θ(1−w1)

(x − θ)2 dx = θ
2
(w2

1 − w1w2 + w2
2).
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In fact, θ(u) is almost uniform and

E
(
θ(u) − θ)2 = θ

2
(w2

1 − w1w2 + w2
2) + O

(
(w1 + w2)

3
)
.

One can use the maximal martingale inequality and Hölder’s inequality to
show the other terms are also O

(
(w1 + w2)

3
)
.
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Theorem 2 The transaction loss is

u1 − u2 =
u0(1 − p)σ2θ

3

pA + (1 − p)c
·

λ

w1 + w2
+ O(λ) + O

(
λ2

(w1 + w2)2

)
.

12
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u0(1 − p)σ2θ

3

pA + (1 − p)c
·

λ

w1 + w2
+ O(λ) + O

(
λ2

(w1 + w2)2

)
.

Idea of Proof:

X1(t) = exp

{∫ t

0

(
r − c + αθ(u) −

1

2
σ2θ2(u)

)
du +

∫ t

0

σθ(u)dW (u)

}
,

X2(t) = X1(t) exp
{
−λ
(
`(t) + m(t)

)}
.

Therefore,

X1−p
1 (t) − X1−p

2 (t) = Z(t)∆(t)Y (t),

where

Z(t) = exp

{
(1 − p)σ

∫ t

0

θ(u) dW (u) −
1

2
(1 − p)2σ2

∫ t

0

θ2(u) du

}
,

∆(t) = exp

{
(1 − p)

∫ t

0

(
r − c + αθ(u) −

1

2
pσ2θ2(u)

)
du

}
,

Y (t) = 1 − exp
{
−λ(1 − p)

(
`(t) + m(t)

)}
.

∆(t) is nearly deterministic. Task is to estimate Y (t) under the measure
induced by Z.
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Estimation of Y (t)

Y (t) = 1 − exp
{
−λ(1 − p)

(
`(t) + m(t)

)}

= λ(1 − p)
(
`(t) + m(t)

)
−

1

2
λ2(1 − p)2

(
`(t) + m(t)

)2
e−ξ(t).

For a doubly reflected Brownian motion on [θ(1−w1), θ(1 + w2)], the sum
of the local times at the boundaries has expectation

t

θ(w1 + w2)
.

Here we have

λ(1 − p)E
(
`(t) + m(t)

)
=

(1 − p)t

θ
·

λ

w1 + w2
+ O(λ).

The second-order term has expectation

O

(
λ2

(w1 + w2)2

)
.

(Easy when 0 < p < 1; requires estimates obtained from solving a control
problem when p > 1.)
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Putting the pieces together.

The loss from displacement and transaction is

u0 − u2 =
u0(1 − p)σ2θ

2

pA + (1 − p)c

(
λθ

w1 + w2
+

p

6
(w2

1 − w1w2 + w2
2)

)

+O(λ) + O
(
(w1 + w2)

3
)

+ O

(
λ2

(w1 + w2)2

)
.

Minimization of
λθ

w1 + w2
+

p

6
(w2

1 − w1w2 + w2
2)

over w1 and w2 results in

w1(λ) = w2(λ) =

(
3λθ

2p

)1/3

,

and a minimal value of (
9θ

2
p

32

)1
3

λ2/3.
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Theorem 3 (Maximization over investment strategies) For ev-
ery η ∈ (0, 1

3), we have

sup
0<w1,w2≤λη

u2 = u0

[
1 −

(1 − p)σ2θ
8/3

pA + (1 − p)c

(
9p

32

)1/3

λ2/3

]
+ O(λ5/6). (2)

Theorem 4 (Maximization over constant consumption) The
right hand side of (2) depends on c in the term u0 and also in the term
pA + (1 − p)c. The maximum over c is attained by c = A + O(λ1/2)
and this maximum value is

v0(1) −
σ2θ

8/3

A1+p

(
9p

32

)1/3

λ2/3 + O(λ5/6).

The leading term in the loss due to transaction and displacement is

σ2θ
8/3

A1+p

(
9p

32

)1/3

λ2/3.

This is in fact the loss for all p > 0, not just for 0 < p < 1.
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Bold Conjecture (stochastic volatility)

dσ2(t) = κ
(
σ2(t)

)
dt + ν

(
σ2(t)

)
dB(t),

where B is independent of W .

For λ = 0, optimal portfolio is Y (t)
X(t) = θ(t)

∆
=

α

pσ(t)
.

Expect for λ > 0, we should keep θ(t)
∆
= Y (t)

X(t) in
[
θ(t)
(
1 − w1(t)

)
, θ(t)

(
1 + w2(t)

)]
.

Diffusion for θ(t) − θ(t) is now D(t)
∆
= σ2θ

4
(t) +

θ
2
(t)ν2

(
σ(t)

)

σ4(t)
.

Rate of utility loss from transaction should be (1 − p)D(t) ·
λ

θ(t)(w1(t) + w2(t))
.

Expect θ(t) to be approximately uniform in the interval, and the rate of
loss of utility from displacement as before:

1

6
p(1 − p)σ2(t)θ

2
(t)
(
w2

1(t) − w1(t)w2(t) + w2
2(t)
)
.

Balance marginal losses to get w1(t) = w2(t) =

(
3

2pθ(t)

)1
3
(

θ
2
(t) +

ν2(σ(t))

σ4(t)

)1
3

λ
1
3 .
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