A Futures Trading Model with Transaction Costs

Karel Janeček

Johann Radon Institute for Computational and Applied Mathematics Linz, Austria

Steven E. Shreve

Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, USA

Isaac Newton Institute July 4, 2005 The day of colonial independence.

Background on proportional transaction costs λ

- Magill & Constantinides, J. Economic Theory, 1976. Proportional transaction costs into Merton's optimal consumption model.
- Hodges & Neuberger, *Rev. Futures Markets*, 1989. Option pricing in the presence of proportional transaction costs.
- Constantinides, J. Political Economy, 1986. Numerical computation of liquidity premium; unable to compute for λ below 50 basis points.
- Fleming, Grossman, Vila & Zariphopoulou, 1990. In model with consumption at final time only, found liquidity premium $O(\lambda^{2/3})$.
- Davis & Norman, *Math. Operations Research*, 1990. Rigorous treatment of Magill/Constantinides model.

- Shreve & Soner, Ann. Applied Probability, 1994. Viscosity solution analysis of Magill/Constantinides model. Found liquidity premium $O(\lambda^{2/3})$.
- Whalley & Wilmott, *Math. Finance*, 1997. Formal asymptotic expansion in powers of $\lambda^{\frac{1}{3}}$ for option pricing problem.
- Janeček & Shreve, *Finance and Stochastics*, 2004.
 Viscosity solution derivation of first two terms in asymptotic expansion of value function.
- Rogers, Mathematics of Finance, 2004. Simple heuristic probabilistic explanation of $O(\lambda^{\frac{2}{3}})$ effect.

- Shreve & Soner, Ann. Applied Probability, 1994. Viscosity solution analysis of Magill/Constantinides model. Found liquidity premium $O(\lambda^{2/3})$.
- Whalley & Wilmott, *Math. Finance*, 1997. Formal asymptotic expansion in powers of $\lambda^{\frac{1}{3}}$ for option pricing problem.
- Janeček & Shreve, *Finance and Stochastics*, 2004.
 Viscosity solution derivation of first two terms in asymptotic expansion of value function.
- Rogers, Mathematics of Finance, 2004. Simple heuristic probabilistic explanation of $O(\lambda^{\frac{2}{3}})$ effect.
- This talk.

A rigorous but not so simple probabilistic explanation of $O(\lambda^{\frac{2}{3}})$.

- Shreve & Soner, Ann. Applied Probability, 1994. Viscosity solution analysis of Magill/Constantinides model. Found liquidity premium $O(\lambda^{2/3})$.
- Whalley & Wilmott, Math. Finance, 1997. Formal asymptotic expansion in powers of $\lambda^{\frac{1}{3}}$ for option pricing problem.
- Janeček & Shreve, *Finance and Stochastics*, 2004.
 Viscosity solution derivation of first two terms in asymptotic expansion of value function.
- Rogers, Mathematics of Finance, 2004. Simple heuristic probabilistic explanation of $O(\lambda^{\frac{2}{3}})$ effect.
- This talk.

A rigorous but not so simple probabilistic explanation of $O(\lambda^{\frac{2}{3}})$.

(i) Builds on a change of measure idea introduced by Rogers 2004.

- Shreve & Soner, Ann. Applied Probability, 1994. Viscosity solution analysis of Magill/Constantinides model. Found liquidity premium $O(\lambda^{2/3})$.
- Whalley & Wilmott, *Math. Finance*, 1997. Formal asymptotic expansion in powers of $\lambda^{\frac{1}{3}}$ for option pricing problem.
- Janeček & Shreve, *Finance and Stochastics*, 2004.
 Viscosity solution derivation of first two terms in asymptotic expansion of value function.
- Rogers, Mathematics of Finance, 2004. Simple heuristic probabilistic explanation of $O(\lambda^{\frac{2}{3}})$ effect.
- This talk.
 - A rigorous but not so simple probabilistic explanation of $O(\lambda^{\frac{2}{3}})$.
 - (i) Builds on a change of measure idea introduced by Rogers 2004.
 - (ii) Attempt to escape the Markov bonds.

- Shreve & Soner, Ann. Applied Probability, 1994. Viscosity solution analysis of Magill/Constantinides model. Found liquidity premium $O(\lambda^{2/3})$.
- Whalley & Wilmott, *Math. Finance*, 1997. Formal asymptotic expansion in powers of $\lambda^{\frac{1}{3}}$ for option pricing problem.
- Janeček & Shreve, *Finance and Stochastics*, 2004.
 Viscosity solution derivation of first two terms in asymptotic expansion of value function.
- Rogers, Mathematics of Finance, 2004. Simple heuristic probabilistic explanation of $O(\lambda^{\frac{2}{3}})$ effect.
- This talk.

A rigorous but not so simple probabilistic explanation of $O(\lambda^{\frac{2}{3}})$.

- (i) Builds on a change of measure idea introduced by Rogers 2004.
- (ii) Attempt to escape the Markov bonds.

(iii) Probability is more fun.

Futures Trading Model

(Mike Harrison: "Work on the simplest problem you don't understand.")

- Futures price: $F(t) = F(0) + \alpha t + \sigma W(t)$.
- Number of futures contracts held: Y(t) = L(t) M(t).
- Cash in money market:

 $dX(t) = Y(t) dF(t) - \lambda \left(dL(t) + dM(t) \right) + rX(t) dt - c(t)X(t) dt.$

Introduce trading proportional to wealth:

$$dL(t) = X(t-) d\ell(t), \quad dM(t) = X(t-) dm(t).$$

Then

$$\begin{split} dY(t) &= X(t-) \big(d\ell(t) - dm(t) \big), \\ dX(t) &= Y(t) \big(\alpha \, dt + \sigma dW(t) \big) - \lambda X(t-) \big(d\ell(t) + dm(t) \big) \\ &+ X(t) \big(r - c(t) \big) \, dt. \end{split}$$

Parameter assumptions:

$$\alpha > 0, \quad \sigma > 0, \quad r > 0, \quad \lambda > 0.$$

- Solvency region: $\mathcal{S} \stackrel{\Delta}{=} \{(x, y) : x \lambda y > 0, x + \lambda y > 0\}.$
- Utility function:

$$U_p(C) \stackrel{\Delta}{=} \begin{cases} \frac{1}{1-p}C^{1-p} & \text{if } p > 0, p \neq 1, \\ \log C & \text{if } p = 1. \end{cases}$$

• Value function:

$$v(x,y) \stackrel{\Delta}{=} \sup_{\ell,m,c} \mathbb{E} \int_0^\infty e^{-\beta t} U_p(c(t)X(t)) dt \quad \forall (x,y) \in \mathcal{S}.$$

• Homotheticity: For
$$\gamma > 0$$
,

$$v(\gamma x, \gamma y) = \begin{cases} \gamma^{1-p} v(x, y) & \text{if } p > 0, p \neq 1, \\ v(x, y) + \frac{1}{\beta} \log \gamma & \text{if } p = 1. \end{cases}$$

• Hamilton-Jacobi-Bellman equation:

$$\min\left\{\beta v - (rx + \alpha y)v_x - \frac{1}{2}\sigma^2 y^2 v_{xx} - \widetilde{U}_p(v_x), \lambda v_x - v_y, \lambda v_x + v_y\right\} = 0,$$

where

$$\widetilde{U}_p(\widetilde{C}) \stackrel{\Delta}{=} \max_{C>0} \left\{ U_p(C) - C\widetilde{C} \right\}.$$

Simplification for this presentation: 0 .

Zero transaction cost:

If λ were zero, the value function would be

$$v_0(x) = \frac{1}{1-p} A^{-p} x^{1-p} \quad \forall x \ge 0,$$

where

$$A \stackrel{\Delta}{=} \frac{\beta - r(1-p)}{p} - \frac{\alpha^2(1-p)}{2\sigma^2 p^2}$$

must be assumed to be positive. The optimal investment proportion is

$$\frac{Y(t)}{X(t)} = \overline{\theta} \stackrel{\Delta}{=} \frac{\alpha}{\sigma^2 p}.$$

The optimal consumption proportion is $c(t) \equiv A$.

Investment proportion

$$\theta(t) \stackrel{\Delta}{=} \frac{Y(t)}{X(t)}$$

HJB equation shows that optimal consumption is a function $c(\theta(t))$ of $\theta(t)$. This function is a constant plus $O(\lambda)$.

Evolution of $\theta(t)$:

$$d\theta(t) = \theta(t) \left(-r + c \left(\theta(t) \right) + \alpha \theta(t) + \sigma^2 \theta^2(t) \right) dt - \sigma \theta^2(t) dW(t) + \left(1 + \lambda \theta(t) \right) d\ell(t) - \left(1 - \lambda \theta(t) \right) dm(t).$$
(1)

Optimal $\theta(t)$ is a doubly-reflected diffusion in the interval $[z_1, z_2]$. The drift and diffusion are bounded uniformly in λ .

Investment proportion

$$\theta(t) \stackrel{\Delta}{=} \frac{Y(t)}{X(t)}$$

HJB equation shows that optimal consumption is a function $c(\theta(t))$ of $\theta(t)$. This function is a constant plus $O(\lambda)$.

Evolution of $\theta(t)$:

$$d\theta(t) = \theta(t) \left(-r + c \left(\theta(t) \right) + \alpha \theta(t) + \sigma^2 \theta^2(t) \right) dt - \sigma \theta^2(t) dW(t) + \left(1 + \lambda \theta(t) \right) d\ell(t) - \left(1 - \lambda \theta(t) \right) dm(t).$$
(1)

Optimal $\theta(t)$ is a doubly-reflected diffusion in the interval $[z_1, z_2]$. The drift and diffusion are bounded uniformly in λ .

Method of analysis

- Fix a Lipschitz function $c(\cdot)$, and "small" positive numbers w_1 and w_2 .
- Let $\theta(t)$ be given by (1) with reflection occurring at the boundaries of $[\overline{\theta}(1-w_1), \overline{\theta}(1+w_2)].$
- We estimate the cost associated with this consumption and investment strategy.

Decomposing the loss

 $c(\cdot), w_1 > 0$ and $w_2 > 0$ given. Let $\theta(\cdot)$ be given by (1). Choose also a constant c > 0. Define three processes, all with initial condition 1.

Process with investment ratio $\overline{\theta}$ and paying no transaction cost:

$$dX_0(t) = X_0(t) \left[(r - c + \alpha \overline{\theta}) dt + \sigma \overline{\theta} dW(t) \right].$$

Process with investment ratio $\theta(\cdot)$ and paying no transaction cost: $dX_1(t) = X_1(t) \left[\left(r - c + \alpha \theta(t) \right) dt + \sigma \theta(t) dW(t) \right].$

Process with investment ratio $\theta(\cdot)$ and paying transaction cost: $dX_2(t) = X_2(t) \left[\left(r - c + \alpha \theta(t) \right) dt + \sigma \theta(t) dW(t) - \lambda (d\ell(t) + dm(t)) \right].$ For i = 1, 2, 3, define $u_i \stackrel{\Delta}{=} \mathbb{E} \int_0^\infty e^{-\beta t} U_p(cX_i(t)) dt.$

Decomposing the loss

 $c(\cdot), w_1 > 0$ and $w_2 > 0$ given. Let $\theta(\cdot)$ be given by (1). Choose also a constant c > 0. Define three processes, all with initial condition 1.

Process with investment ratio $\overline{\theta}$ and paying no transaction cost:

$$dX_0(t) = X_0(t) \left[(r - c + \alpha \overline{\theta}) dt + \sigma \overline{\theta} dW(t) \right].$$

Process with investment ratio $\theta(\cdot)$ and paying no transaction cost: $dX_1(t) = X_1(t) \left[\left(r - c + \alpha \theta(t) \right) dt + \sigma \theta(t) dW(t) \right].$

Process with investment ratio $\theta(\cdot)$ and paying transaction cost: $dX_2(t) = X_2(t) \left[\left(r - c + \alpha \theta(t) \right) dt + \sigma \theta(t) dW(t) - \lambda (d\ell(t) + dm(t)) \right].$

For i = 1, 2, 3, define $u_i \stackrel{\Delta}{=} \mathbb{E} \int_0^\infty e^{-\beta t} U_p(cX_i(t)) dt$.

- Loss due to displacement $u_0 u_1$ increases with w_1 and w_2 .
- Loss due to transaction $u_1 u_2$ decreases with w_1 and w_2 .
- We choose w_1 and w_2 to balance these marginal losses.
- At the $O(\lambda)$ level of accuracy, $c(\cdot)$ is irrelevant.
- After optimizing over w_1 and w_2 , we optimize over c.

Theorem 1 The displacement loss is

$$u_0 - u_1 = \frac{u_0 p(1-p)\sigma^2 \overline{\theta}^2}{6(pA + (1-p)c)} (w_1^2 - w_1 w_2 + w_2^2) + O((w_1 + w_2)^3).$$

Theorem 1 The displacement loss is

$$u_0 - u_1 = \frac{u_0 p(1-p)\sigma^2 \overline{\theta}^2}{6(pA + (1-p)c)} (w_1^2 - w_1 w_2 + w_2^2) + O((w_1 + w_2)^3).$$

IDEA OF PROOF:

$$X_{0}(t) = \exp\left\{\left(r - c + \alpha \overline{\theta} - \frac{1}{2}\sigma^{2}\overline{\theta}^{2}\right)t + \sigma \overline{\theta}W(t)\right\},\$$

$$X_{1}(t) = \exp\left\{\int_{0}^{t}\left(r - c + \alpha \theta(u) - \frac{1}{2}\sigma^{2}\theta^{2}(u)\right)du + \int_{0}^{t}\sigma\theta(u)dW(u)\right\}.$$

A trick learned from Chris Rogers shows

$$\mathbb{E}X_1^{1-p}(t) = \mathbb{E}X_0^{1-p}(t) \cdot \overline{\mathbb{E}} \exp\left\{ (1-p)\sigma \int_0^t \left(\theta(u) - \overline{\theta}\right) d\overline{W}(u) - \frac{1}{2}(1-p)\sigma^2 \int_0^t \left(\theta(u) - \overline{\theta}\right)^2 du \right\},$$

where

$$\overline{W}(t) \stackrel{\Delta}{=} W(t) - (1-p)\sigma\overline{\theta}t$$

is a Brownian motion under $\overline{\mathbb{E}}$.

Set

$$I(t) \stackrel{\Delta}{=} (1-p)\sigma \int_0^t \left(\theta(u) - \overline{\theta}\right) d\overline{W}(u),$$
$$R(t) \stackrel{\Delta}{=} \frac{1}{2}(1-p)\sigma^2 \int_0^t \left(\theta(u) - \overline{\theta}\right)^2 du.$$

Then

If $\theta(u)$

$$\overline{\mathbb{E}} \exp\left(I(t) + R(t)\right) = \overline{\mathbb{E}} \left[1 + I(t) + \frac{R(t)}{2} + \frac{1}{2}I^2(t) + I(t)R(t) + \frac{1}{2}R^2(t)\right] \\ + \overline{\mathbb{E}} \sum_{n=3}^{\infty} \frac{1}{n!} \left(I(t) + R(t)\right)^n.$$

The interesting terms are

$$\overline{\mathbb{E}}R(t) = \frac{1}{2}(1-p)\sigma^2 \int_0^t \overline{\mathbb{E}}(\theta(u) - \overline{\theta})^2 du,$$
$$\overline{\mathbb{E}}\left[\frac{1}{2}I^2(t)\right] = (1-p)^2\sigma^2 \int_0^t \overline{\mathbb{E}}(\theta(u) - \overline{\theta})^2 du.$$
were uniform on $[\overline{\theta}(1-w_1), \overline{\theta}(1+w_2)]$, then

$$\overline{\mathbb{E}}\big(\theta(u) - \overline{\theta})^2 = \frac{1}{\overline{\theta}(w_1 + w_2)} \int_{\overline{\theta}(1 - w_1)}^{\psi(1 + w_2)} (x - \overline{\theta})^2 \, dx = \overline{\theta}^2 (w_1^2 - w_1 w_2 + w_2^2).$$

In fact, $\theta(u)$ is almost uniform and

$$\overline{\mathbb{E}}\big(\theta(u) - \overline{\theta})^2 = \overline{\theta}^2(w_1^2 - w_1w_2 + w_2^2) + O\big((w_1 + w_2)^3\big).$$

One can use the maximal martingale inequality and Hölder's inequality to show the other terms are also $O((w_1 + w_2)^3)$.

Theorem 2 The transaction loss is

$$u_1 - u_2 = \frac{u_0(1-p)\sigma^2\overline{\theta}^3}{pA + (1-p)c} \cdot \frac{\lambda}{w_1 + w_2} + O(\lambda) + O\left(\frac{\lambda^2}{(w_1 + w_2)^2}\right).$$

Theorem 2 The transaction loss is

$$u_1 - u_2 = \frac{u_0(1-p)\sigma^2\overline{\theta}^3}{pA + (1-p)c} \cdot \frac{\lambda}{w_1 + w_2} + O(\lambda) + O\left(\frac{\lambda^2}{(w_1 + w_2)^2}\right).$$

IDEA OF PROOF:

$$X_1(t) = \exp\left\{\int_0^t \left(r - c + \alpha\theta(u) - \frac{1}{2}\sigma^2\theta^2(u)\right) du + \int_0^t \sigma\theta(u) dW(u)\right\},\$$

$$X_2(t) = X_1(t) \exp\left\{-\lambda\left(\ell(t) + m(t)\right)\right\}.$$

Therefore,

$$X_1^{1-p}(t) - X_2^{1-p}(t) = Z(t)\Delta(t)Y(t),$$

where

$$Z(t) = \exp\left\{ (1-p)\sigma \int_0^t \theta(u) \, dW(u) - \frac{1}{2}(1-p)^2 \sigma^2 \int_0^t \theta^2(u) \, du \right\},\$$

$$\Delta(t) = \exp\left\{ (1-p) \int_0^t \left(r - c + \alpha \theta(u) - \frac{1}{2}p\sigma^2 \theta^2(u) \right) \, du \right\},\$$

$$Y(t) = 1 - \exp\left\{ -\lambda(1-p) \left(\ell(t) + m(t) \right) \right\}.$$

 $\Delta(t)$ is nearly deterministic. Task is to estimate Y(t) under the measure induced by Z.

Estimation of Y(t)

$$Y(t) = 1 - \exp\left\{-\lambda(1-p)\left(\ell(t) + m(t)\right)\right\} \\ = \lambda(1-p)\left(\ell(t) + m(t)\right) - \frac{1}{2}\lambda^2(1-p)^2\left(\ell(t) + m(t)\right)^2 e^{-\xi(t)}.$$

For a doubly reflected Brownian motion on $[\overline{\theta}(1-w_1), \overline{\theta}(1+w_2)]$, the sum of the local times at the boundaries has expectation

$$\frac{t}{\overline{\theta}(w_1+w_2)}.$$

Here we have

$$\lambda(1-p)\mathbb{E}\big(\ell(t)+m(t)\big) = \frac{(1-p)t}{\overline{\theta}} \cdot \frac{\lambda}{w_1+w_2} + O(\lambda).$$

The second-order term has expectation

$$O\left(\frac{\lambda^2}{(w_1+w_2)^2}\right).$$

(Easy when 0 ; requires estimates obtained from solving a control problem when <math>p > 1.)

Putting the pieces together.

The loss from displacement and transaction is

$$u_0 - u_2 = \frac{u_0(1-p)\sigma^2\overline{\theta}^2}{pA + (1-p)c} \left(\frac{\lambda\overline{\theta}}{w_1 + w_2} + \frac{p}{6}(w_1^2 - w_1w_2 + w_2^2) \right) + O(\lambda) + O\left((w_1 + w_2)^3\right) + O\left(\frac{\lambda^2}{(w_1 + w_2)^2}\right).$$

Minimization of

$$\frac{\lambda\theta}{w_1 + w_2} + \frac{p}{6}(w_1^2 - w_1w_2 + w_2^2)$$

over w_1 and w_2 results in

$$w_1(\lambda) = w_2(\lambda) = \left(\frac{3\lambda\overline{\theta}}{2p}\right)^{1/3},$$

and a minimal value of

$$\left(\frac{9\overline{\theta}^2 p}{32}\right)^{\frac{1}{3}} \lambda^{2/3}.$$

Theorem 3 (Maximization over investment strategies) For every $\eta \in (0, \frac{1}{3})$, we have

$$\sup_{0 < w_1, w_2 \le \lambda^{\eta}} u_2 = u_0 \left[1 - \frac{(1-p)\sigma^2 \overline{\theta}^{8/3}}{pA + (1-p)c} \left(\frac{9p}{32}\right)^{1/3} \lambda^{2/3} \right] + O(\lambda^{5/6}).$$
(2)

Theorem 4 (Maximization over constant consumption) The right hand side of (2) depends on c in the term u_0 and also in the term pA + (1 - p)c. The maximum over c is attained by $c = A + O(\lambda^{1/2})$ and this maximum value is

$$v_0(1) - \frac{\sigma^2 \overline{\theta}^{8/3}}{A^{1+p}} \left(\frac{9p}{32}\right)^{1/3} \lambda^{2/3} + O(\lambda^{5/6}).$$

The leading term in the loss due to transaction and displacement is

$$\frac{\sigma^2 \overline{\theta}^{8/3}}{A^{1+p}} \left(\frac{9p}{32}\right)^{1/3} \lambda^{2/3}.$$

This is in fact the loss for all p > 0, not just for 0 .

Bold Conjecture (stochastic volatility)

$$d\sigma^2(t) = \kappa \big(\sigma^2(t) \big) \, dt + \nu \big(\sigma^2(t) \big) \, dB(t),$$

where B is independent of W.

For $\lambda = 0$, optimal portfolio is $\frac{Y(t)}{X(t)} = \overline{\theta}(t) \stackrel{\Delta}{=} \frac{\alpha}{p\sigma(t)}$.

Expect for $\lambda > 0$, we should keep $\theta(t) \stackrel{\Delta}{=} \frac{Y(t)}{X(t)}$ in $\left[\overline{\theta}(t)\left(1 - w_1(t)\right), \overline{\theta}(t)\left(1 + w_2(t)\right)\right]$. Diffusion for $\theta(t) - \overline{\theta}(t)$ is now $D(t) \stackrel{\Delta}{=} \sigma^2 \overline{\theta}^4(t) + \frac{\overline{\theta}^2(t)\nu^2(\sigma(t))}{\sigma^4(t)}$.

Rate of utility loss from transaction should be $(1-p)D(t) \cdot \frac{\lambda}{\overline{\theta}(t)(w_1(t)+w_2(t))}$.

Expect $\theta(t)$ to be approximately uniform in the interval, and the rate of loss of utility from displacement as before:

$$\frac{1}{6}p(1-p)\sigma^2(t)\overline{\theta}^2(t)\left(w_1^2(t) - w_1(t)w_2(t) + w_2^2(t)\right).$$

Balance marginal losses to get $w_1(t) = w_2(t) = \left(\frac{3}{2p\overline{\theta}(t)}\right)^{\frac{1}{3}} \left(\overline{\theta}^2(t) + \frac{\nu^2(\sigma(t))}{\sigma^4(t)}\right)^{\frac{1}{3}} \lambda^{\frac{1}{3}}.$