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e Here is the fourth best estimator for different values of A, averaged
for the 30 DJIA stocks and the last 10 trading days in April 2004:
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5. Monte Carlo Simulations

RV TSRV
Fifth Best Fourth Best Third Best Second Best First Bes’g
[Y, Y] ’glel) [Y, Y] gfparse) [Y, Y] ,(prarse,opt) [Y, Y] ,(I?vg) <ﬁ>,_(:dj )
Small Sample Bias 1.1699 102 3.89 10> 2.18 10> 1.926 10> 2108
Asymptotic Bias 1.1700 102 3.90 10> 2.20 10—° 1.927 10> 0]




6. Data Analysis

e Here is a comparison of RV to TSRV for INTC, last 10 trading days
in April 2004

for INTC on April 19, 2004

TSRV and &
0.0003

0.000275
0.00025
0.000225
0.0002
0.000175

0.00015




e Zooming around the 5 minutes sampling frequency:

0.00028

0.00027

0.00026
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e Robustness to the selection of the slow (K) and fast (J) time scales,
INTC again:
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e The resulting estimator, MSRV has the form of
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e For suitably selected weights a; and M = O(n!/?2), (X, X)) con-

verges to the (X, X) at rate n—1/4

e Optimal weights are given in closed-form.
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