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dXt = µtdt + σtdWt

using discretely sampled data on the transaction price process at times
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• Without noise, the realized volatility
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quadratic variation
∫ T
0 σ2

t dt.

• In theory, sampling as often as possible will produce in the limit a

perfect estimate of that quantity.
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• Suppose first that σ is constant. Without noise, the log-returns are

iid N(0, σ2∆). The MLE for σ2 coincides with the realized volatility

of the process,

σ̂2 =
1

T

n∑
i=1

(Xti+1 −Xti)
2,

• T 1/2
(
σ̂2 − σ2

)
−→

T−→∞
N(0, 2σ4∆)

• Thus selecting ∆ as small as possible is optimal for the purpose of

estimating σ2.
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• When volatility is stochastic, dXt = σtdWt :

– Realized volatility
∑n

i=1(Xti+1−Xti)
2 estimates the quadratic vari-

ation
∫ T
0 σ2

t dt.

– The sum converges to the integral, with a known distribution: Ja-

cod (1994), Jacod and Protter (1998), etc.

– As in the constant σ case, selecting ∆ as small as possible (= n

as large as possible) is optimal.
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4. With Noise

• When dXt = σtdWt, but we observe X with noise, the object of

interest remains the quadratic variation of X :

〈X, X〉T =
∫ T

0
σ2

t dt

over a fixed time period [0, T ], or possibly several such time periods.

• Asymptotics are in ∆ → 0, with T fixed.

• The usual estimator of 〈X, X〉T is the realized volatility

[Y, Y ]T =
n∑

i=1

(Yti+1 − Yti)
2.
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• Here is the fourth best estimator for different values of ∆, averaged

for the 30 DJIA stocks and the last 10 trading days in April 2004:

5sec 30sec 1mn 2mn 3mn 4mn 5mn

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

• As ∆ = T/n → 0, the graph shows that the estimator diverges as

predicted by our result (2nE[ε2]) instead of converging to the object

of interest 〈X, X〉T as predicted by standard asymptotic theory.
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Best

• If one insists upon sampling sparsely, what is the right answer? Is it 5

mn, 10 mn, 15 mn?

• To determine optimally the sparse sampling frequency, we show that:

n∗sparse =

(
T

4 E[ε2]2

∫ T

0
σ4

t dt

)1/3

.

• This gives rise to the third best estimator we define as [Y, Y ]
(sparse,opt)
T .
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• While a better estimator than [Y, Y ]
(all)
T , [Y, Y ]

(avg)
T remains biased.

• The bias of [Y, Y ]
(avg)
T is 2n̄E[ε2].

• But recall that E[ε2] can be consistently approximated by the fifth

best estimator:

Ê[ε2] =
1

2n
[Y, Y ]

(all)
T

• Hence the bias of [Y, Y ](avg) can be consistently estimated by n̄
n[Y, Y ]

(all)
T .
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−
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• We call this estimator Two Scales Realized Volatility.
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• To the best of our knowledge, this is the only consistent estimator for
〈X, X〉T in the presence of market microstructure noise.



5. Monte Carlo Simulations

RV TSRV
Fifth Best Fourth Best Third Best Second Best First Best

[Y, Y ]
(all)
T [Y, Y ]

(sparse)
T [Y, Y ]

(sparse,opt)
T [Y, Y ]

(avg)
T

̂〈X, X〉
(adj)

T

Small Sample Bias 1.1699 10−2 3.89 10−5 2.18 10−5 1.926 10−5 2 10−8

Asymptotic Bias 1.1700 10−2 3.90 10−5 2.20 10−5 1.927 10−5 0

Small Sample Variance 1.791 10−8 1.4414 10−9 1.59 10−9 9.41 10−10 9 10−11

Asymptotic Variance 1.788 10−8 1.4409 10−9 1.58 10−9 9.37 10−10 8 10−11

Small Sample RMSE 1.1699 10−2 5.437 10−5 4.543 10−5 3.622 10−5 9.4 10−6

Asymptotic RMSE 1.1700 10−2 5.442 10−5 4.546 10−5 3.618 10−5 8.9 10−6

Small Sample Relative Bias 182 0.61 0.18 0.15 −0.00045
Small Sample Relative Variance 82502 1.15 0.11 0.053 0.0043
Small Sample Relative RMSE 340 1.24 0.37 0.28 0.065



6. Data Analysis

• Here is a comparison of RV to TSRV for INTC, last 10 trading days

in April 2004:

5s 1mn 2mn 3mn 4mn 5mn 6mn 7mn 8mn 9mn 10mn

0.00015

0.000175

0.0002

0.000225

0.00025

0.000275

0.0003

TSRV and RV for INTC on April 19, 2004



• Zooming around the 5 minutes sampling frequency:

4mn 5mn 6mn

0.00026

0.00027

0.00028

0.00029

RV

TSRV
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• So far, we have assumed that the noise ε was iid.

• In that case, log-returns are MA(1):

Yτi − Yτi−1 =
∫ τi

τi−1

σtdWt + ετi − ετi−1



• For example, here is the autocorrelogram for AIG transactions, last 10

trading days in April 2004:
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• But here is the autocorrelogram for INTC transactions, same last 10

trading days in April 2004:
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• A simple model to capture this higher order dependence is

εti = Uti + Vti

where U is iid, V is AR(1) and U ⊥ V.



• A simple model to capture this higher order dependence is

εti = Uti + Vti

where U is iid, V is AR(1) and U ⊥ V.

• Fitted autocorrelogram for INTC:
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• The TSRV Estimator with (J, K) Time Scales

̂〈X, X〉T = [Y, Y ]
(K)
T︸ ︷︷ ︸

slow time scale

−
n̄K

n̄J
[Y, Y ]

(J)
T︸ ︷︷ ︸

fast time scale

• We show that if we select J/K → 0 when n → ∞, then this es-

timator is robust to (essentially) arbitrary time series dependence in

microstructure noise.

• Specifically, we let the noise process εti be stationary and strong mixing

with exponential decay. We also suppose that E
[
ε4+κ

]
< ∞ for some

κ > 0.



• Robustness to the selection of the slow (K) and fast (J) time scales,

INTC again:

Robustness of TSRV with Time−Dependent Noise for INTC
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• At the cost of higher complexity, it is possible to generalize TSRV

to multiple time scales, by averaging not on two time scales but on

multiple time scales (Zhang 2004).

• The resulting estimator, MSRV has the form of

̂〈X, X〉
(msrv)

T =
M∑
i=1

ai [Y, Y ]
(Ki)
T︸ ︷︷ ︸

weighted sum of M slow time scales

+
1

n
[Y, Y ]

(all)
T︸ ︷︷ ︸

fast time scale

• TSRV corresponds to the special case where M = 1, i.e., where one

uses a single slow time scale in conjunction with the fast time scale to

bias-correct it.
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• For suitably selected weights ai and M = O(n1/2), ̂〈X, X〉
(msrv)

T con-

verges to the 〈X, X〉T at rate n−1/4.

• Optimal weights are given in closed-form.

• We also provide an analysis of this estimator under dependence of the

noise.



9. Conclusions



9. Conclusions

• Two Scales Realized Volatility



9. Conclusions

• Two Scales Realized Volatility

– In the limit where all the data is used, realized volatility converges

to the variance of the noise, not the quadratic variation of the

log-returns



9. Conclusions

• Two Scales Realized Volatility

– In the limit where all the data is used, realized volatility converges

to the variance of the noise, not the quadratic variation of the

log-returns

– The practical response so far has been to use sparse sampling: once

every 5 or 10 minutes.



9. Conclusions

• Two Scales Realized Volatility

– In the limit where all the data is used, realized volatility converges

to the variance of the noise, not the quadratic variation of the

log-returns

– The practical response so far has been to use sparse sampling: once

every 5 or 10 minutes.

– But it is possible instead to correct for the noise by subsampling,

averaging and bias-correcting and obtain a well behaved estimator

that makes use of all the data: TSRV



9. Conclusions

• Two Scales Realized Volatility

– In the limit where all the data is used, realized volatility converges

to the variance of the noise, not the quadratic variation of the

log-returns

– The practical response so far has been to use sparse sampling: once

every 5 or 10 minutes.

– But it is possible instead to correct for the noise by subsampling,

averaging and bias-correcting and obtain a well behaved estimator

that makes use of all the data: TSRV



• The difference matters:



• The difference matters:

– In Monte Carlo simulations, the RMSE of TSRV is orders of mag-

nitude smaller than that of RV



• The difference matters:

– In Monte Carlo simulations, the RMSE of TSRV is orders of mag-

nitude smaller than that of RV

– In empirical examples, the difference is also meaningful: for INTC,

TSRV = 0.0025 vs. RV in the range (0.0029, 0.0035).



• The difference matters:

– In Monte Carlo simulations, the RMSE of TSRV is orders of mag-

nitude smaller than that of RV

– In empirical examples, the difference is also meaningful: for INTC,

TSRV = 0.0025 vs. RV in the range (0.0029, 0.0035).



• And one final important message:



• And one final important message:

– Any time one has an impulse to discard data, one can usually do

better: using likelihood corrections in the parametric volatility case

or subsampling and averaging in the stochastic volatility case.



• And one final important message:

– Any time one has an impulse to discard data, one can usually do

better: using likelihood corrections in the parametric volatility case

or subsampling and averaging in the stochastic volatility case.

– No matter what the model is, no matter what quantity is being

estimated.


