# Ultra High Frequency Volatility Estimation with Market Microstructure Noise

Yacine Aït-Sahalia Princeton University

Per A. Mykland The University of Chicago

Lan Zhang
Carnegie-Mellon University

## 1. Introduction

## 1. Introduction

 Observed transaction price = unobservable efficient price + some noise component due to the imperfections of the trading process

$$Y_{\tau} = X_{\tau} + \varepsilon_{\tau}$$

#### 1. Introduction

 Observed transaction price = unobservable efficient price + some noise component due to the imperfections of the trading process

$$Y_{\tau} = X_{\tau} + \varepsilon_{\tau}$$

ε summarizes a diverse array of market microstructure effects, either informational or not: bid-ask bounces, discreteness of price changes, differences in trade sizes or informational content of price changes, gradual response of prices to a block trade, the strategic component of the order flow, inventory control effects, etc.

• We study the implications of such a data generating process for the estimation of the volatility of the efficient log-price process

$$dX_t = \mu_t dt + \sigma_t dW_t$$

using discretely sampled data on the transaction price process at times 0,  $\Delta$ ,...,  $n\Delta = T$ .

• We study the implications of such a data generating process for the estimation of the volatility of the efficient log-price process

$$dX_t = \mu_t dt + \sigma_t dW_t$$

using discretely sampled data on the transaction price process at times 0,  $\Delta$ ,...,  $n\Delta = T$ .

• Without noise, the realized volatility  $\sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$  estimates the quadratic variation  $\int_0^T \sigma_t^2 dt$ .

• We study the implications of such a data generating process for the estimation of the volatility of the efficient log-price process

$$dX_t = \mu_t dt + \sigma_t dW_t$$

using discretely sampled data on the transaction price process at times 0,  $\Delta$ ,...,  $n\Delta = T$ .

- Without noise, the realized volatility  $\sum_{i=1}^{n} (X_{t_{i+1}} X_{t_i})^2$  estimates the quadratic variation  $\int_0^T \sigma_t^2 dt$ .
- In theory, sampling as often as possible will produce in the limit a perfect estimate of that quantity.

| <ul> <li>We show that the situation changes radically in the presence of monitoring microstructure noise:</li> </ul> | arket |
|----------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                      |       |
|                                                                                                                      |       |
|                                                                                                                      |       |
|                                                                                                                      |       |

- We show that the situation changes radically in the presence of market microstructure noise:
  - Computing RV using all the data (say every second) leads to an estimate of the variance of the noise, not the quadratic variation that one seeks to estimate.

- We show that the situation changes radically in the presence of market microstructure noise:
  - Computing RV using all the data (say every second) leads to an estimate of the variance of the noise, not the quadratic variation that one seeks to estimate.
  - In practice, people sample sparsely at some lower frequency (5 mn to 30 mn usually)

- We show that the situation changes radically in the presence of market microstructure noise:
  - Computing RV using all the data (say every second) leads to an estimate of the variance of the noise, not the quadratic variation that one seeks to estimate.
  - In practice, people sample sparsely at some lower frequency (5 mn to 30 mn usually)
  - If one insists upon sampling sparsely, what is the right frequency?
     We show how to determine the optimal sparse frequency.

- We show that the situation changes radically in the presence of market microstructure noise:
  - Computing RV using all the data (say every second) leads to an estimate of the variance of the noise, not the quadratic variation that one seeks to estimate.
  - In practice, people sample sparsely at some lower frequency (5 mn to 30 mn usually)
  - If one insists upon sampling sparsely, what is the right frequency?
     We show how to determine the optimal sparse frequency.

| <ul><li>But even<br/>of data.</li></ul> | if sampling o | ptimally, on | ie is throwin | g away a la | arge amount |
|-----------------------------------------|---------------|--------------|---------------|-------------|-------------|
|                                         |               |              |               |             |             |
|                                         |               |              |               |             |             |
|                                         |               |              |               |             |             |
|                                         |               |              |               |             |             |

- But even if sampling optimally, one is throwing away a large amount of data.
  - For example, if T=1 NYSE day and transactions occur every  $\delta=1$  second, the original sample size is  $n=T/\delta=23,400.$

- But even if sampling optimally, one is throwing away a large amount of data.
  - For example, if T=1 NYSE day and transactions occur every  $\delta=1$  second, the original sample size is  $n=T/\delta=23,400.$
  - But sampling sparsely even at the highest frequency used by empirical researchers (once every 5 mn) means throwing away 299 out of every 300 observations: the sample size used is only  $n_{sparse} = 78$ .

- But even if sampling optimally, one is throwing away a large amount of data.
  - For example, if T=1 NYSE day and transactions occur every  $\delta=1$  second, the original sample size is  $n=T/\delta=23,400.$
  - But sampling sparsely even at the highest frequency used by empirical researchers (once every 5 mn) means throwing away 299 out of every 300 observations: the sample size used is only  $n_{sparse} = 78$ .
- This violates one of the most basic principles of statistics.

- But even if sampling optimally, one is throwing away a large amount of data.
  - For example, if T=1 NYSE day and transactions occur every  $\delta=1$  second, the original sample size is  $n=T/\delta=23,400.$
  - But sampling sparsely even at the highest frequency used by empirical researchers (once every 5 mn) means throwing away 299 out of every 300 observations: the sample size used is only  $n_{sparse} = 78$ .
- This violates one of the most basic principles of statistics.

| <ul> <li>We propose a solution which makes use of the full data sample</li> </ul> |  |
|-----------------------------------------------------------------------------------|--|
| The propose a solution which makes use of the fair data sample                    |  |
|                                                                                   |  |
|                                                                                   |  |

- We propose a solution which makes use of the full data sample:
  - Our estimator (TSRV) is based on subsampling, averaging and bias-correction.

- We propose a solution which makes use of the full data sample:
  - Our estimator (TSRV) is based on subsampling, averaging and bias-correction.
  - This is the only consistent estimator (we know of) for quadratic variation in the presence of market microstructure noise.

- We propose a solution which makes use of the full data sample:
  - Our estimator (TSRV) is based on subsampling, averaging and bias-correction.
  - This is the only consistent estimator (we know of) for quadratic variation in the presence of market microstructure noise.

• Without market microstructure noise

• Without market microstructure noise

• What happens when noise is present

- Without market microstructure noise
- What happens when noise is present
  - The fifth best approach: use all the data to compute RV

- Without market microstructure noise
- What happens when noise is present
  - The fifth best approach: use all the data to compute RV
  - The fourth best approach: sample sparsely  $(5,\ 10\ \text{or}\ 15\ \text{mn})$  to compute RV

- Without market microstructure noise
- What happens when noise is present
  - The fifth best approach: use all the data to compute RV
  - The fourth best approach: sample sparsely (5, 10 or 15 mn) to compute RV
  - The third best approach: sample sparsely at an optimally determined frequency to compute RV

- Without market microstructure noise
- What happens when noise is present
  - The fifth best approach: use all the data to compute RV
  - The fourth best approach: sample sparsely (5, 10 or 15 mn) to compute RV
  - The third best approach: sample sparsely at an optimally determined frequency to compute RV

- The second best approach: subsampling and averaging

- The second best approach: subsampling and averaging
- The first best approach, TSRV: use the fifth best to bias-correct the second best

- The second best approach: subsampling and averaging
- The first best approach, TSRV: use the fifth best to bias-correct the second best

Monte Carlos

- The second best approach: subsampling and averaging
- The first best approach, TSRV: use the fifth best to bias-correct the second best
- Monte Carlos
- Two extensions: time series dependence in the noise, and MSRV

- The second best approach: subsampling and averaging
- The first best approach, TSRV: use the fifth best to bias-correct the second best
- Monte Carlos
- Two extensions: time series dependence in the noise, and MSRV
- Data analysis: INTC, MSFT

- The second best approach: subsampling and averaging
- The first best approach, TSRV: use the fifth best to bias-correct the second best
- Monte Carlos
- Two extensions: time series dependence in the noise, and MSRV
- Data analysis: INTC, MSFT

3. Without Market Microstructure Noise

### 3. Without Market Microstructure Noise

• Suppose first that  $\sigma$  is constant. Without noise, the log-returns are iid  $N(0, \sigma^2 \Delta)$ . The MLE for  $\sigma^2$  coincides with the realized volatility of the process,

$$\hat{\sigma}^2 = \frac{1}{T} \sum_{i=1}^n (X_{t_{i+1}} - X_{t_i})^2,$$

## 3. Without Market Microstructure Noise

• Suppose first that  $\sigma$  is constant. Without noise, the log-returns are iid  $N(0, \sigma^2 \Delta)$ . The MLE for  $\sigma^2$  coincides with the realized volatility of the process,

$$\hat{\sigma}^2 = \frac{1}{T} \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2,$$

• 
$$T^{1/2} \left( \hat{\sigma}^2 - \sigma^2 \right) \xrightarrow[T \to \infty]{} N(0, 2\sigma^4 \Delta)$$

#### 3. Without Market Microstructure Noise

• Suppose first that  $\sigma$  is constant. Without noise, the log-returns are iid  $N(0, \sigma^2 \Delta)$ . The MLE for  $\sigma^2$  coincides with the realized volatility of the process,

$$\hat{\sigma}^2 = \frac{1}{T} \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2,$$

• 
$$T^{1/2} \left( \hat{\sigma}^2 - \sigma^2 \right) \xrightarrow[T \to \infty]{} N(0, 2\sigma^4 \Delta)$$

• Thus selecting  $\Delta$  as small as possible is optimal for the purpose of estimating  $\sigma^2$ .

• When volatility is stochastic,  $dX_t = \sigma_t dW_t$ :

- When volatility is stochastic,  $dX_t = \sigma_t dW_t$ :
  - Realized volatility  $\sum_{i=1}^n (X_{t_{i+1}} X_{t_i})^2$  estimates the quadratic variation  $\int_0^T \sigma_t^2 dt$ .

- When volatility is stochastic,  $dX_t = \sigma_t dW_t$ :
  - Realized volatility  $\sum_{i=1}^n (X_{t_{i+1}} X_{t_i})^2$  estimates the quadratic variation  $\int_0^T \sigma_t^2 dt$ .
  - The sum converges to the integral, with a known distribution: Jacod (1994), Jacod and Protter (1998), etc.

- When volatility is stochastic,  $dX_t = \sigma_t dW_t$ :
  - Realized volatility  $\sum_{i=1}^{n} (X_{t_{i+1}} X_{t_i})^2$  estimates the quadratic variation  $\int_0^T \sigma_t^2 dt$ .
  - The sum converges to the integral, with a known distribution: Jacod (1994), Jacod and Protter (1998), etc.
  - As in the constant  $\sigma$  case, selecting  $\Delta$  as small as possible (= n as large as possible) is optimal.

• When  $dX_t = \sigma_t dW_t$ , but we observe X with noise, the object of interest remains the quadratic variation of X:

$$\langle X, X \rangle_T = \int_0^T \sigma_t^2 dt$$

over a fixed time period [0, T], or possibly several such time periods.

• When  $dX_t = \sigma_t dW_t$ , but we observe X with noise, the object of interest remains the quadratic variation of X:

$$\langle X, X \rangle_T = \int_0^T \sigma_t^2 dt$$

over a fixed time period [0, T], or possibly several such time periods.

ullet Asymptotics are in  $\Delta \to 0$ , with T fixed.

• When  $dX_t = \sigma_t dW_t$ , but we observe X with noise, the object of interest remains the quadratic variation of X:

$$\langle X, X \rangle_T = \int_0^T \sigma_t^2 dt$$

over a fixed time period [0, T], or possibly several such time periods.

- Asymptotics are in  $\Delta \rightarrow 0$ , with T fixed.
- ullet The usual estimator of  $\langle X, X \rangle_T$  is the realized volatility

$$[Y,Y]_T = \sum_{i=1}^n (Y_{t_{i+1}} - Y_{t_i})^2.$$

• We show that, if one uses all the data (say sampled every second),

• We show that, if one uses all the data (say sampled every second),

$$[Y,Y]_T^{(all)} \overset{\mathcal{L}}{\approx} \underbrace{\langle X,X\rangle_T}_{\text{object of interest}} + \underbrace{2nE[\varepsilon^2]}_{\text{object of interest}} + \underbrace{2$$

conditionally on the X process.

• We show that, if one uses all the data (say sampled every second),

$$[Y,Y]_T^{(all)} \overset{\mathcal{L}}{\approx} \underbrace{\langle X,X\rangle_T}_{\text{object of interest}} + \underbrace{2nE[\varepsilon^2]}_{\text{object of interest}} + \underbrace{2$$

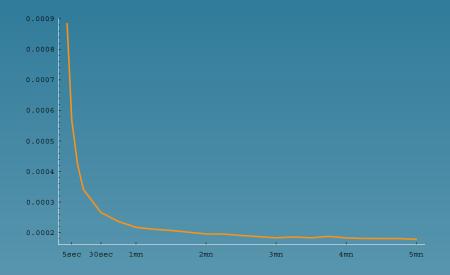
conditionally on the X process.

• Of course, sampling as prescribed by  $[Y,Y]_T^{(all)}$  is not what people do in practice

- Of course, sampling as prescribed by  $[Y,Y]_T^{(all)}$  is not what people do in practice
- Instead, they use the estimator  $[Y,Y]_T^{(sparse)}$  constructed by summing squared log-returns at some lower frequency: 5 mn, or 10, 15, 30 mn, typically.

- Of course, sampling as prescribed by  $[Y,Y]_T^{(all)}$  is not what people do in practice
- Instead, they use the estimator  $[Y,Y]_T^{(sparse)}$  constructed by summing squared log-returns at some lower frequency: 5 mn, or 10, 15, 30 mn, typically.

• Here is the fourth best estimator for different values of  $\Delta$ , averaged for the 30 DJIA stocks and the last 10 trading days in April 2004:



• As  $\Delta = T/n \to 0$ , the graph shows that the estimator diverges as predicted by our result  $(2nE[\varepsilon^2])$  instead of converging to the object of interest  $\langle X, X \rangle_T$  as predicted by standard asymptotic theory.

• If one insists upon sampling sparsely, what is the right answer? Is it 5 mn, 10 mn, 15 mn?

- If one insists upon sampling sparsely, what is the right answer? Is it 5 mn, 10 mn, 15 mn?
- To determine optimally the sparse sampling frequency, we show that:

$$n_{sparse}^* = \left(\frac{T}{4 E[\varepsilon^2]^2} \int_0^T \sigma_t^4 dt\right)^{1/3}.$$

- If one insists upon sampling sparsely, what is the right answer? Is it 5 mn, 10 mn, 15 mn?
- To determine optimally the sparse sampling frequency, we show that:

$$n_{sparse}^* = \left(\frac{T}{4 E[\varepsilon^2]^2} \int_0^T \sigma_t^4 dt\right)^{1/3}.$$

• This gives rise to the third best estimator we define as  $[Y,Y]_T^{(sparse,opt)}$ .

• We have just argued that one could benefit from using infrequently sampled data.

• We have just argued that one could benefit from using infrequently sampled data.

• Indeed, the fourth and third best estimators do better than the fifth best.

• We have just argued that one could benefit from using infrequently sampled data.

• Indeed, the fourth and third best estimators do better than the fifth best.

But this entails discarding a very substantial fraction of the data sample.

• We have just argued that one could benefit from using infrequently sampled data.

• Indeed, the fourth and third best estimators do better than the fifth best.

But this entails discarding a very substantial fraction of the data sample.

 And yet, one of the most basic lessons of statistics is that one should not do this.

• We have just argued that one could benefit from using infrequently sampled data.

• Indeed, the fourth and third best estimators do better than the fifth best.

But this entails discarding a very substantial fraction of the data sample.

 And yet, one of the most basic lessons of statistics is that one should not do this. • We present a method to tackle the problem:

- We present a method to tackle the problem:
  - We partition the original grid of observation times,  $\mathcal{G} = \{t_0, ..., t_n\}$  into subsamples,  $\mathcal{G}^{(k)}$ , k = 1, ..., K where  $n/K \to \infty$  as  $n \to \infty$ .

- We present a method to tackle the problem:
  - We partition the original grid of observation times,  $\mathcal{G}=\{t_0,...,t_n\}$  into subsamples,  $\mathcal{G}^{(k)},\,k=1,...,K$  where  $n/K o\infty$  as  $n o\infty$ .
  - For example, for  $\mathcal{G}^{(1)}$  start at the first observation and take an observation every 5 minutes; for  $\mathcal{G}^{(2)}$ , start at the second observation and take an observation every 5 minutes, etc.

- We present a method to tackle the problem:
  - We partition the original grid of observation times,  $\mathcal{G}=\{t_0,...,t_n\}$  into subsamples,  $\mathcal{G}^{(k)},\,k=1,...,K$  where  $n/K\to\infty$  as  $n\to\infty$ .
  - For example, for  $\mathcal{G}^{(1)}$  start at the first observation and take an observation every 5 minutes; for  $\mathcal{G}^{(2)}$ , start at the second observation and take an observation every 5 minutes, etc.
  - Then we average the estimators obtained on the subsamples.

- We present a method to tackle the problem:
  - We partition the original grid of observation times,  $\mathcal{G}=\{t_0,...,t_n\}$  into subsamples,  $\mathcal{G}^{(k)},\,k=1,...,K$  where  $n/K\to\infty$  as  $n\to\infty$ .
  - For example, for  $\mathcal{G}^{(1)}$  start at the first observation and take an observation every 5 minutes; for  $\mathcal{G}^{(2)}$ , start at the second observation and take an observation every 5 minutes, etc.
  - Then we average the estimators obtained on the subsamples.
- To the extent that there is a benefit to subsampling, this benefit can now be retained, while the variation of the estimator can be lessened by the averaging.

- We present a method to tackle the problem:
  - We partition the original grid of observation times,  $\mathcal{G}=\{t_0,...,t_n\}$  into subsamples,  $\mathcal{G}^{(k)},\,k=1,...,K$  where  $n/K\to\infty$  as  $n\to\infty$ .
  - For example, for  $\mathcal{G}^{(1)}$  start at the first observation and take an observation every 5 minutes; for  $\mathcal{G}^{(2)}$ , start at the second observation and take an observation every 5 minutes, etc.
  - Then we average the estimators obtained on the subsamples.
- To the extent that there is a benefit to subsampling, this benefit can now be retained, while the variation of the estimator can be lessened by the averaging.

• This gives rise to the estimator

$$[Y,Y]_T^{(avg)} = \frac{1}{K} \sum_{k=1}^K [Y,Y]_T^{(k)}$$

constructed by averaging the estimators  $[Y,Y]_T^{(k)}$  obtained on K grids of average size  $\bar{n}$ .

• This gives rise to the estimator

$$[Y,Y]_T^{(avg)} = \frac{1}{K} \sum_{k=1}^K [Y,Y]_T^{(k)}$$

constructed by averaging the estimators  $[Y,Y]_T^{(k)}$  obtained on K grids of average size  $\bar{n}$ .

• We show that:

$$[Y,Y]_T^{(avg)} \overset{\mathcal{L}}{\approx} \underbrace{\langle X,X\rangle_T}_{\text{object of interest}} + \underbrace{2\bar{n}E[\varepsilon^2]}_{\text{object of interest}}$$
 bias due to noise 
$$+ \underbrace{[4\frac{\bar{n}}{K}E[\varepsilon^4] + \frac{4T}{3\bar{n}}\int_0^T \sigma_t^4 dt}_{\text{due to noise}}]^{1/2}Z_{\text{total}}$$
 due to noise due to discretization total variance

• This gives rise to the estimator

$$[Y,Y]_T^{(avg)} = \frac{1}{K} \sum_{k=1}^K [Y,Y]_T^{(k)}$$

constructed by averaging the estimators  $[Y,Y]_T^{(k)}$  obtained on K grids of average size  $\bar{n}$ .

• We show that:

$$[Y,Y]_T^{(avg)} \overset{\mathcal{L}}{\approx} \underbrace{\langle X,X\rangle_T}_{\text{object of interest}} + \underbrace{2\bar{n}E[\varepsilon^2]}_{\text{object of interest}}$$
 bias due to noise 
$$+ \underbrace{[4\frac{\bar{n}}{K}E[\varepsilon^4] + \frac{4T}{3\bar{n}}\int_0^T \sigma_t^4 dt}_{\text{due to noise}}]^{1/2}Z_{\text{total}}$$
 due to noise due to discretization total variance

• While a better estimator than  $[Y,Y]_T^{(all)}$ ,  $[Y,Y]_T^{(avg)}$  remains biased.

- While a better estimator than  $[Y,Y]_T^{(all)}$ ,  $[Y,Y]_T^{(avg)}$  remains biased.
- The bias of  $[Y,Y]_T^{(avg)}$  is  $2\overline{n}E[\varepsilon^2]$ .

- While a better estimator than  $[Y,Y]_T^{(all)}$ ,  $[Y,Y]_T^{(avg)}$  remains biased.
- The bias of  $[Y,Y]_T^{(avg)}$  is  $2\overline{n}E[\varepsilon^2]$ .
- But recall that  $E[\varepsilon^2]$  can be consistently approximated by the fifth best estimator:

$$\widehat{E[\varepsilon^2]} = \frac{1}{2n} [Y, Y]_T^{(all)}$$

- While a better estimator than  $[Y, Y]_T^{(all)}$ ,  $[Y, Y]_T^{(avg)}$  remains biased.
- The bias of  $[Y,Y]_T^{(avg)}$  is  $2\bar{n}E[\varepsilon^2]$ .
- But recall that  $E[\varepsilon^2]$  can be consistently approximated by the fifth best estimator:

$$\widehat{E[\varepsilon^2]} = \frac{1}{2n} [Y, Y]_T^{(all)}$$

• Hence the bias of  $[Y,Y]^{(avg)}$  can be consistently estimated by  $\frac{\bar{n}}{n}[Y,Y]^{(all)}_T$ .

| • A b | ias-adjusted | estimator fo | or $\langle X, X  angle$ ca | an thus be co | nstructed as |
|-------|--------------|--------------|-----------------------------|---------------|--------------|
|       |              |              |                             |               |              |
|       |              |              |                             |               |              |
|       |              |              |                             |               |              |
|       |              |              |                             |               |              |
|       |              |              |                             |               |              |

ullet A bias-adjusted estimator for  $\langle X,X \rangle$  can thus be constructed as

$$\langle \widehat{X}, \widehat{X} \rangle_T = \underbrace{[Y, Y]_T^{(avg)}}_{\text{slow time scale}} - \underbrace{\frac{\overline{n}}{n}}_{\text{fast time scale}} \underbrace{[Y, Y]_T^{(all)}}_{\text{fast time scale}}$$

ullet A bias-adjusted estimator for  $\langle X, X \rangle$  can thus be constructed as

$$\langle \widehat{X}, \widehat{X} \rangle_T = \underbrace{[Y, Y]_T^{(avg)}}_{\text{slow time scale}} - \underbrace{\frac{\overline{n}}{n}}_{\text{fast time scale}} \underbrace{[Y, Y]_T^{(all)}}_{\text{fast time scale}}$$

We call this estimator Two Scales Realized Volatility.

• We show that if the number of subsamples is optimally selected as  $K^* = cn^{2/3}$ , then TSRV has the following distribution:

$$\begin{split} \widehat{\langle X, X \rangle}_T &\overset{\mathcal{L}}{\approx} \underbrace{\langle X, X \rangle_T} \\ \text{object of interest} \\ + & \frac{1}{n^{1/6}} \left[ \underbrace{\frac{8}{c^2} E[\varepsilon^2]^2}_{\text{due to noise}} + \underbrace{c \frac{4T}{3} \int_0^T \sigma_t^4 dt}_{\text{due to discretization}} \right]^{1/2} Z_{\text{total}} \\ & \underbrace{\text{due to noise}}_{\text{total variance}} \end{split}$$

• We show that if the number of subsamples is optimally selected as  $K^* = cn^{2/3}$ , then TSRV has the following distribution:

$$\begin{split} \widehat{\langle X, X \rangle}_T &\overset{\mathcal{L}}{\approx} \underbrace{\langle X, X \rangle_T} \\ \text{object of interest} \\ + & \frac{1}{n^{1/6}} \left[ \underbrace{\frac{8}{c^2} E[\varepsilon^2]^2}_{\text{due to noise}} + \underbrace{c\frac{4T}{3} \int_0^T \sigma_t^4 dt}_{\text{due to discretization}} \right]^{1/2} Z_{\text{total}} \\ & \underbrace{\text{due to noise}}_{\text{total variance}} \end{split}$$

 Unlike all the previously considered ones, this estimator is now correctly centered • We show that if the number of subsamples is optimally selected as  $K^* = cn^{2/3}$ , then TSRV has the following distribution:

$$\begin{split} \widehat{\langle X, X \rangle}_T &\overset{\mathcal{L}}{\approx} \underbrace{\langle X, X \rangle_T}_{\text{object of interest}} \\ &+ \underbrace{\frac{1}{n^{1/6}} \left[ \frac{8}{c^2} E[\varepsilon^2]^2 + \underbrace{c \frac{4T}{3} \int_0^T \sigma_t^4 dt}_{\text{due to noise}} \right]^{1/2} Z_{\text{total}}}_{\text{due to noise}} \\ &\underbrace{\qquad \qquad }_{\text{total variance}} \end{split}$$

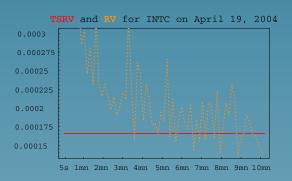
- Unlike all the previously considered ones, this estimator is now correctly centered
- To the best of our knowledge, this is the only consistent estimator for  $\langle X, X \rangle_T$  in the presence of market microstructure noise.

### 5. Monte Carlo Simulations

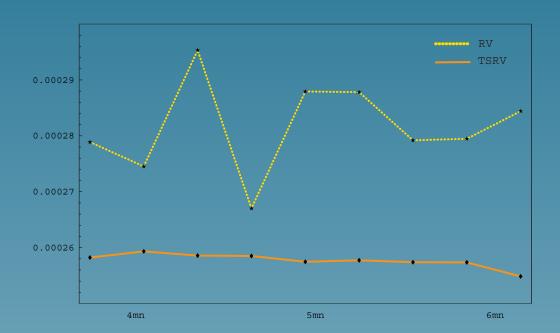
|                                                                                            | Fifth Best $\left[Y,Y ight]_{T}^{(all)}$ | Fourth Best $[Y, Y]_T^{(sparse)}$           | Third Best $[Y,Y]_T^{(sparse,opt)}$ | Second Best $[Y, Y]_T^{(avg)}$      | First Best $\widehat{\langle X, X \rangle}_T^{(adj)}$ |
|--------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------------|
| Small Sample Bias<br>Asymptotic Bias                                                       | $1.1699 \ 10^{-2}$ $1.1700 \ 10^{-2}$    | $3.89 \ 10^{-5}$ $3.90 \ 10^{-5}$           | $2.18 \ 10^{-5} \ 2.20 \ 10^{-5}$   | $1.926 \ 10^{-5} \ 1.927 \ 10^{-5}$ | 2 10 <sup>-8</sup><br>0                               |
| Small Sample Variance<br>Asymptotic Variance                                               | $1.791 \ 10^{-8} \ 1.788 \ 10^{-8}$      | $oxed{1.4414 \ 10^{-9} \ 1.4409 \ 10^{-9}}$ | $1.59 \ 10^{-9} \ 1.58 \ 10^{-9}$   | $9.41 \ 10^{-10} \ 9.37 \ 10^{-10}$ | $9\ 10^{-11}\ 8\ 10^{-11}$                            |
| Small Sample RMSE<br>Asymptotic RMSE                                                       | $1.1699 \ 10^{-2}$ $1.1700 \ 10^{-2}$    | $5.437 \ 10^{-5}$ $5.442 \ 10^{-5}$         | $4.543 \ 10^{-5} \ 4.546 \ 10^{-5}$ | $3.622 \ 10^{-5} \ 3.618 \ 10^{-5}$ | $9.4 \ 10^{-6} \ 8.9 \ 10^{-6}$                       |
| Small Sample Relative Bias<br>Small Sample Relative Variance<br>Small Sample Relative RMSE | 182<br>82502<br>340                      | 0.61<br>1.15<br>1.24                        | 0.18<br>0.11<br>0.37                | 0.15<br>0.053<br>0.28               | -0.00045<br>0.0043<br>0.065                           |

### 6. Data Analysis

• Here is a comparison of RV to TSRV for INTC, last 10 trading days in April 2004:



• Zooming around the 5 minutes sampling frequency:



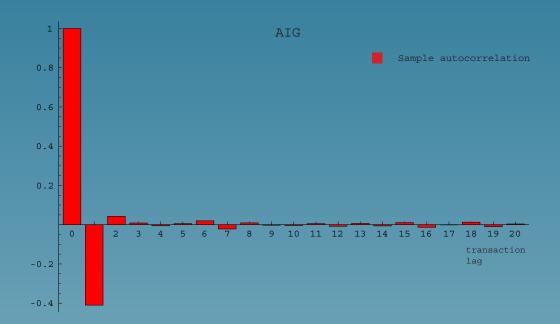
7. Dependent Market Microstructure Noise

### 7. Dependent Market Microstructure Noise

- ullet So far, we have assumed that the noise arepsilon was iid.
- In that case, log-returns are MA(1):

$$Y_{\tau_i} - Y_{\tau_{i-1}} = \int_{\tau_{i-1}}^{\tau_i} \sigma_t dW_t + \varepsilon_{\tau_i} - \varepsilon_{\tau_{i-1}}$$

• For example, here is the autocorrelogram for AIG transactions, last 10 trading days in April 2004:



• But here is the autocorrelogram for INTC transactions, same last 10 trading days in April 2004:



• A simple model to capture this higher order dependence is

$$\varepsilon_{t_i} = U_{t_i} + V_{t_i}$$

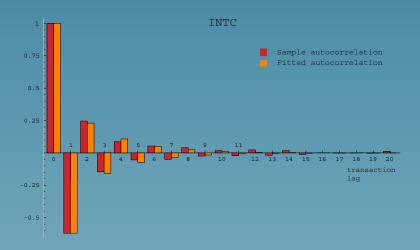
where U is iid, V is AR(1) and  $U \perp V$ .

• A simple model to capture this higher order dependence is

$$\varepsilon_{t_i} = U_{t_i} + V_{t_i}$$

where U is iid, V is AR(1) and  $U \perp V$ .

• Fitted autocorrelogram for INTC:



• The TSRV Estimator with (J, K) Time Scales

$$\langle \widehat{X}, \widehat{X} \rangle_T = \underbrace{[Y, Y]_T^{(K)}}_{\text{slow time scale}} - \underbrace{\frac{\overline{n}_K}{\overline{n}_J}}_{\text{fast time scale}} \underbrace{[Y, Y]_T^{(J)}}_{\text{fast time scale}}$$

• The TSRV Estimator with (J, K) Time Scales

$$\langle \widehat{X}, \widehat{X} \rangle_T = \underbrace{[Y, Y]_T^{(K)}}_{\text{slow time scale}} - \underbrace{\frac{\overline{n}_K}{\overline{n}_J}}_{\text{fast time scale}} \underbrace{[Y, Y]_T^{(J)}}_{\text{fast time scale}}$$

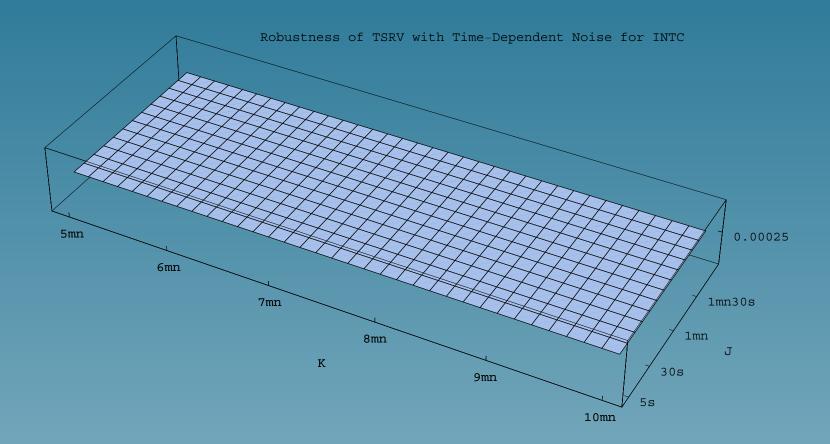
• We show that if we select  $J/K \to 0$  when  $n \to \infty$ , then this estimator is robust to (essentially) arbitrary time series dependence in microstructure noise.

• The TSRV Estimator with (J, K) Time Scales

$$\langle \widehat{X}, \widehat{X} \rangle_T = \underbrace{[Y, Y]_T^{(K)}}_{\text{slow time scale}} - \underbrace{\frac{\overline{n}_K}{\overline{n}_J}}_{\text{fast time scale}} \underbrace{[Y, Y]_T^{(J)}}_{\text{fast time scale}}$$

- We show that if we select  $J/K \to 0$  when  $n \to \infty$ , then this estimator is robust to (essentially) arbitrary time series dependence in microstructure noise.
- Specifically, we let the noise process  $\varepsilon_{t_i}$  be stationary and strong mixing with exponential decay. We also suppose that  $E\left[\varepsilon^{4+\kappa}\right]<\infty$  for some  $\kappa>0$ .

ullet Robustness to the selection of the slow (K) and fast (J) time scales, INTC again:



• We have seen that TSRV provides:

- We have seen that TSRV provides:
  - the first consistent and asymptotic (mixed) normal estimator of the quadratic variation  $\langle X, X \rangle_T$ ;

- We have seen that TSRV provides:
  - the first consistent and asymptotic (mixed) normal estimator of the quadratic variation  $\langle X, X \rangle_T$ ;
  - that it can be made robust to arbitrary serial dependence in market microstructure noise;

- We have seen that TSRV provides:
  - the first consistent and asymptotic (mixed) normal estimator of the quadratic variation  $\langle X, X \rangle_T$ ;
  - that it can be made robust to arbitrary serial dependence in market microstructure noise;
  - and that it has the rate of convergence  $n^{-1/6}$ .

- We have seen that TSRV provides:
  - the first consistent and asymptotic (mixed) normal estimator of the quadratic variation  $\langle X, X \rangle_T$ ;
  - that it can be made robust to arbitrary serial dependence in market microstructure noise;
  - and that it has the rate of convergence  $n^{-1/6}$ .

• At the cost of higher complexity, it is possible to generalize TSRV to multiple time scales, by averaging not on two time scales but on multiple time scales (Zhang 2004).

- At the cost of higher complexity, it is possible to generalize TSRV to multiple time scales, by averaging not on two time scales but on multiple time scales (Zhang 2004).
- The resulting estimator, MSRV has the form of

$$(\widehat{X}, \widehat{X})_T^{(\text{msrv})} = \sum_{i=1}^{M} a_i [Y, Y]_T^{(K_i)} + \frac{1}{n} [Y, Y]_T^{(all)}$$
weighted sum of  $M$  slow time scales

- At the cost of higher complexity, it is possible to generalize TSRV to multiple time scales, by averaging not on two time scales but on multiple time scales (Zhang 2004).
- The resulting estimator, MSRV has the form of

$$(\widehat{X}, \widehat{X})_T^{(\text{msrv})} = \sum_{i=1}^{M} a_i [Y, Y]_T^{(K_i)} + \frac{1}{n} [Y, Y]_T^{(all)}$$
weighted sum of  $\widehat{M}$  slow time scales

• TSRV corresponds to the special case where M=1, i.e., where one uses a single slow time scale in conjunction with the fast time scale to bias-correct it.

• For suitably selected weights  $a_i$  and  $M=O(n^{1/2}),$   $\langle \widehat{X,X} \rangle_T^{(\text{msrv})}$  converges to the  $\langle X,X \rangle_T$  at rate  $n^{-1/4}$ .

• For suitably selected weights  $a_i$  and  $M=O(n^{1/2}),$   $\langle \widehat{X,X} \rangle_T^{(\text{msrv})}$  converges to the  $\langle X,X \rangle_T$  at rate  $n^{-1/4}$ .

• Optimal weights are given in closed-form.

• For suitably selected weights  $a_i$  and  $M=O(n^{1/2}),$   $\langle \widehat{X,X} \rangle_T^{(\text{msrv})}$  converges to the  $\langle X,X \rangle_T$  at rate  $n^{-1/4}$ .

• Optimal weights are given in closed-form.

• We also provide an analysis of this estimator under dependence of the noise.

• Two Scales Realized Volatility

- Two Scales Realized Volatility
  - In the limit where all the data is used, realized volatility converges to the variance of the noise, not the quadratic variation of the log-returns

- Two Scales Realized Volatility
  - In the limit where all the data is used, realized volatility converges to the variance of the noise, not the quadratic variation of the log-returns
  - The practical response so far has been to use sparse sampling: once every 5 or 10 minutes.

- Two Scales Realized Volatility
  - In the limit where all the data is used, realized volatility converges to the variance of the noise, not the quadratic variation of the log-returns
  - The practical response so far has been to use sparse sampling: once every 5 or 10 minutes.
  - But it is possible instead to correct for the noise by subsampling, averaging and bias-correcting and obtain a well behaved estimator that makes use of all the data: TSRV

- Two Scales Realized Volatility
  - In the limit where all the data is used, realized volatility converges to the variance of the noise, not the quadratic variation of the log-returns
  - The practical response so far has been to use sparse sampling: once every 5 or 10 minutes.
  - But it is possible instead to correct for the noise by subsampling, averaging and bias-correcting and obtain a well behaved estimator that makes use of all the data: TSRV

• The difference matters:

- The difference matters:
  - In Monte Carlo simulations, the RMSE of TSRV is orders of magnitude smaller than that of RV

#### • The difference matters:

- In Monte Carlo simulations, the RMSE of TSRV is orders of magnitude smaller than that of RV
- In empirical examples, the difference is also meaningful: for INTC, TSRV = 0.0025 vs. RV in the range (0.0029, 0.0035).

#### • The difference matters:

- In Monte Carlo simulations, the RMSE of TSRV is orders of magnitude smaller than that of RV
- In empirical examples, the difference is also meaningful: for INTC, TSRV = 0.0025 vs. RV in the range (0.0029, 0.0035).

• And one final important message:

- And one final important message:
  - Any time one has an impulse to discard data, one can usually do better: using likelihood corrections in the parametric volatility case or subsampling and averaging in the stochastic volatility case.

- And one final important message:
  - Any time one has an impulse to discard data, one can usually do better: using likelihood corrections in the parametric volatility case or subsampling and averaging in the stochastic volatility case.
  - No matter what the model is, no matter what quantity is being estimated.