On the relation between length and time scales in glassy systems

A. Montanari¹, G. Semerjian²

¹ENS, Paris, ²Rome, La Sapienza

January 11, 2006

4 3 4 4 3

Outline

• What is this talk about

- A few examples of glassy systems
- Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

伺 ト く ヨ ト く ヨ ト

Outline

- What is this talk about
- A few examples of glassy systems
- Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

同 ト イ ヨ ト イ ヨ ト

Outline

- Motivation
 - What is this talk about
 - A few examples of glassy systems
- 2 Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

同 ト イ ヨ ト イ ヨ ト

Outline

- What is this talk about
- A few examples of glassy systems

2 Definitions and a general inequality

- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

A 10

A B > A B >

Outline

- What is this talk about
- A few examples of glassy systems
- 2 Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

4 3 5 4 3

Outline

- What is this talk about
- A few examples of glassy systems
- 2 Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

Open problems

4 B K 4 B K

Outline

- What is this talk about
- A few examples of glassy systems
- 2 Definitions and a general inequality
- 3 Sketch of the proof
- 4 The exact relation: a glimpse from mean field

5 Open problems

4 B K 4 B K

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Jean-Philippe Bouchaud (Jan 10, 2006)

Finite range systems: no diverging time scale without a diverging time scale.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Jean-Philippe Bouchaud (Jan 10, 2006)

Finite range systems: no diverging time scale without a diverging time scale.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Jean-Philippe Bouchaud (Jan 10, 2006)

Finite range systems: no diverging time scale without a diverging time scale.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

This talk

Proposition

$\ell \leq \tau \leq \exp\{O(\ell^d)\}$.

Physical intuition:

 $\ell \leq \tau \qquad \longrightarrow$ information must propagate through a correlated region.

 $\tau \leq \exp\{O(\ell^d)\} \rightarrow$ the system can be broken in boxes of size ℓ .

イロン 不同 とくほう イロン

-

What is this talk about

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

This talk

Proposition

$$\ell \leq \tau \leq \exp\{O(\ell^d)\}$$
.

Physical intuition:

 $\ell \leq \tau \qquad \qquad \rightarrow \text{ information must propagate through a} \\ \text{ correlated region.}$

 $\tau \leq \exp\{O(\ell^d)\} \rightarrow$ the system can be broken in boxes of size ℓ .

・ロット (雪) (日) (日) (日)

What is this talk about

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

It's an obvious result.

Space vs. time correlations is a classical problem (Holley, Aizenmann, Zegarlinski, Stroock, Martinelli, Olivieri,...).

So, why bother proving anything?

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

It's an obvious result.

Space vs. time correlations is a classical problem (Holley, Aizenmann, Zegarlinski, Stroock, Martinelli, Olivieri,...).

So, why bother proving anything?

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

It's an obvious result.

Space vs. time correlations is a classical problem (Holley, Aizenmann, Zegarlinski, Stroock, Martinelli, Olivieri,...).

So, why bother proving anything?

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(1) Classical results ill-suited to 'glassy' systems.

'Global' quantities (e.g. spectral gap of the dynamics). Control of arbitrary b.c.'s.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(1) Classical results ill-suited to 'glassy' systems.

'Global' quantities (e.g. spectral gap of the dynamics).

Control of arbitrary b.c.'s.

- 4 同 6 4 日 6 4 日 6

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(1) Classical results ill-suited to 'glassy' systems.

'Global' quantities (e.g. spectral gap of the dynamics).

Control of arbitrary b.c.'s.

(人間) ト く ヨ ト く ヨ ト

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(2) What are ℓ and τ ?

Near a glass transition:

No sign of criticality in static 2-point functions (e.g. $\langle \rho(x) \rho(y) \rangle$).

Dramatic increase of relaxation time scales.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(2) What are ℓ and τ ?

Near a glass transition:

No sign of criticality in static 2-point functions (e.g. $\langle \rho(x)\rho(y)\rangle$).

Dramatic increase of relaxation time scales.

(人間) ト く ヨ ト く ヨ ト

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(2) What are ℓ and τ ?

Near a glass transition:

No sign of criticality in static 2-point functions (e.g. $\langle \rho(x)\rho(y)\rangle$).

Dramatic increase of relaxation time scales.

- 4 同 2 4 回 2 4 回 2 4

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(3) After all, not so obvious.

And can indeed be false for carefully chosen models.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Why bother?

(3) After all, not so obvious.

And can indeed be false for carefully chosen models.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Example (1): Antiferromagnetic Potts model on sparse random graphs

G = (V, E): graph with degree k. Configuration: $x = \{x_i; i \in V\}, x_i \in \{1, \dots, q\}$

$$H(x) = \sum_{(i,j)\in E} \mathbb{I}(x_i = x_j).$$

Heath-bath dynamics at temperature T.

```
G is a uniformly random graph, and k>k_*(q) \downarrow ldeal glass transition at T_{
m d}>0.
```

- - E - - E

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Example (1): Antiferromagnetic Potts model on sparse random graphs

G = (V, E): graph with degree k. Configuration: $x = \{x_i; i \in V\}, x_i \in \{1, \dots, q\}$

$$H(x) = \sum_{(i,j)\in E} \mathbb{I}(x_i = x_j).$$

Heath-bath dynamics at temperature T.

G is a uniformly random graph, and $k>k_*(q)$ \downarrow Ideal glass transition at $T_{
m d}>$ 0.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Example (1): Antiferromagnetic Potts model on sparse random graphs

G = (V, E): graph with degree k. Configuration: $x = \{x_i; i \in V\}, x_i \in \{1, \dots, q\}$

$$H(x) = \sum_{(i,j)\in E} \mathbb{I}(x_i = x_j).$$

Heath-bath dynamics at temperature T.

$$G$$
 is a uniformly random graph, and $k>k_*(q)$ \downarrow Ideal glass transition at $T_{
m d}>0.$

- 4 回 ト 4 ヨト 4 ヨト

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

q-Coloring random graphs

Given a graph G, find a proper q-coloring of G.

伺 ト く ヨ ト く ヨ ト

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

q-Coloring random graphs

Given a graph G, find a proper q-coloring of G.

/□ ▶ < 글 ▶ < 글

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

q-Coloring random graphs

Given a graph G, find a proper q-coloring of G.

/∄ ▶ ∢ ∃ ▶

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

Example (2): Lattice glass (Biroli-Mézard)

$$G = 1, \dots, L^d$$
: d dimensional lattice $n = \{n_i : i \in G\}, n_i \in \{0, 1\}.$

$$H(n) = -\mu \sum_{i} n_i + \beta \sum_{i} n_i \mathbb{I}(\sum_{|j-i|=1} n_j \ge m).$$

Sluggish dynamics at large μ , β .

No signature in the two point susceptibility.

Definitions and a general inequality Sketch of the proof The exact relation: a glimpse from mean field Open problems

What is this talk about A few examples of glassy systems

m = 3.

 $H(n)=-16\mu+2\beta.$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Configuration :
$$x = \{x_i : i = 1, ..., N\} \in \mathcal{X}^N$$
, (\mathcal{X} finite set).

Energy function :
$$E(x) = \sum_{a=1}^{M} E_a(x_{i_1(a)}, \dots, x_{i_k(a)}).$$

Gibbs distribution: $\mu(x) \propto \exp{\{-E(x)\}}$.

伺 ト く ヨ ト く ヨ ト

Graph representation: $E(x) = E_a(x_1, x_2, x_4) + E_b(x_1, x_2) + \dots$

 $d(i,j) = \dots$

・ 同 ト ・ ヨ ト ・ ヨ ト

Graph representation: $E(x) = E_a(x_1, x_2, x_4) + E_b(x_1, x_2) + \dots$

 $d(i,j)=\ldots$

伺 ト く ヨ ト く ヨ ト

Graph representation: $E(x) = E_a(x_1, x_2, x_4) + E_b(x_1, x_2) + \dots$

 $d(i,j) = \ldots$

A 10

A B + A B +

General definitions (dynamics)

Initial configurations $x(0) \sim \mu$.

The spin x_i tries to flip in the interval dt with probability dt.

 x_i changes to x'_i with probability $\kappa^x_i(x'_i)$ depending only on the neighbors of *i* (locality).

Aperiodic, irreducible + detailed balance

$$\mu(x)\kappa_i^x(x_i')=\mu(x)\kappa_i^x(x_i').$$

- 1. Degree $\leq k < \infty$.
- 2. For each *i* there exist a permitted ('empty') state x_i^* s.t. $\mu(x_i^*|x_{\sim i}) \ge \mu_* > 0$.
- 3. For each *i*, $\kappa_i^x(x_i^*) \ge \kappa_* > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. Degree $\leq k < \infty$.
- 2. For each *i* there exist a permitted ('empty') state x_i^* s.t. $\mu(x_i^*|x_{\sim i}) \ge \mu_* > 0$.
- 3. For each *i*, $\kappa_i^x(x_i^*) \ge \kappa_* > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. Degree $\leq k < \infty$.
- 2. For each *i* there exist a permitted ('empty') state x_i^* s.t. $\mu(x_i^*|x_{\sim i}) \ge \mu_* > 0$.
- 3. For each *i*, $\kappa_i^x(x_i^*) \ge \kappa_* > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

General definitions (time scale)

$$C_i(t) \equiv \max_{f:|f(x)|\leq 1} \left[\langle f(x_i(0))f(x_i(t)) \rangle - \langle f(x_i(0)) \rangle \langle f(x_i(t)) \rangle
ight].$$

$$au_i(\varepsilon) \equiv \inf\{t : C_i(t) \leq \varepsilon\}.$$

 ε a fixed small number (e.g. 0.01).

同 ト イ ヨ ト イ ヨ ト

General definitions (time scale)

$$C_i(t) \equiv \max_{f:|f(x)|\leq 1} \left[\langle f(x_i(0))f(x_i(t)) \rangle - \langle f(x_i(0)) \rangle \langle f(x_i(t)) \rangle
ight].$$

$$\tau_i(\varepsilon) \equiv \inf\{t : C_i(t) \leq \varepsilon\}.$$

 ε a fixed small number (e.g. 0.01).

同 ト イ ヨ ト イ ヨ ト

General definitions (length scale)

$$x_{\sim i,r} \equiv \{x_j : d(i,j) > r\}.$$

$$G_i(r) \equiv \max_{f,F:|f|,|F|\leq 1} \left| \langle f(x_i)F(x_{\sim i,r})\rangle - \langle f(x_i)\rangle \langle F(x_{\sim i,r})\rangle \right|.$$

$\ell_i(\varepsilon) \equiv \inf\{r : G_i(r) \leq \varepsilon\}.$

arepsilon a fixed small number (e.g. 0.01).

- 4 同 2 4 日 2 4 日 2 4

General definitions (length scale)

$$x_{\sim i,r} \equiv \{x_j : d(i,j) > r\}.$$

$$G_i(r) \equiv \max_{f,F:|f|,|F|\leq 1} \left| \langle f(x_i)F(x_{\sim i,r}) \rangle - \langle f(x_i) \rangle \langle F(x_{\sim i,r}) \rangle \right|.$$

$$\ell_i(\varepsilon) \equiv \inf\{r : G_i(r) \leq \varepsilon\}.$$

arepsilon a fixed small number (e.g. 0.01).

- 4 同 6 4 日 6 4 日 6

General definitions (length scale)

$$x_{\sim i,r} \equiv \{x_j : d(i,j) > r\}.$$

$$G_i(r) \equiv \max_{f,F:|f|,|F|\leq 1} \left| \langle f(x_i)F(x_{\sim i,r})\rangle - \langle f(x_i)\rangle \langle F(x_{\sim i,r})\rangle \right|.$$

$$\ell_i(\varepsilon) \equiv \inf\{r : G_i(r) \leq \varepsilon\}.$$

 ε a fixed small number (e.g. 0.01).

Length scale: an alternative definition.

$\langle f(x_i) \rangle_{i,r}^{y}$ conditional expectation on Ball(i, r) with b.c. y.

伺 ト く ヨ ト く ヨ ト

$$G'_i(r) = \max_{f:|f(x)| \leq 1} \left| \langle f(x_i) \langle f(x'_i) \rangle_{i,r}^x \rangle - \langle f(x_i) \rangle^2 \right|.$$

$$\tau_i'(\varepsilon) \equiv \inf\{r:\ldots\}$$

Bouchaud-Biroli:

Pick an equilibrium reference configuration ...

・ロン ・雪 と ・ ヨ と ・ ヨ と

$$G'_i(r) = \max_{f:|f(x)| \leq 1} \left| \langle f(x_i) \langle f(x'_i) \rangle_{i,r}^x \rangle - \langle f(x_i) \rangle^2 \right|.$$

$$\tau_i'(\varepsilon) \equiv \inf\{r:\ldots\}$$

Bouchaud-Biroli:

Pick an equilibrium reference configuration ...

Proposition

$$C_1\ell_i(\varepsilon') \leq au_i(\varepsilon) \leq \exp\left\{C_2|Ball(i,\ell_i(\varepsilon''))|\right\}$$
.

where $\varepsilon' = c_1 \varepsilon^{1/2}$, and $\varepsilon'' = c_2 \varepsilon^2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair, Peres, etc. . .)

Take two copies of the system, initialize with a thermalized configuration and run them in parallel:

Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair, Peres, etc. . .)

Take two copies of the system, initialize with a thermalized configuration and run them in parallel:

A. Montanari, G. Semerjian On the relation between length and time scales in glassy systems

Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair, Peres, etc. . .)

Take two copies of the system, initialize with a thermalized configuration and run them in parallel:

A. Montanari, G. Semerjian On the relation between length and time scales in glassy systems

Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair, Peres, etc. . .)

Take two copies of the system, initialize with a thermalized configuration and run them in parallel:

Usual dynamics. Never flips in $G \setminus Ball(i, r)$.

A. Montanari, G. Semerjian On the relation between length and time scales in glassy systems

Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair, Peres, etc. . .)

Take two copies of the system, initialize with a thermalized configuration and run them in parallel:

Usual dynamics. Never flips in $G \setminus Ball(i, r)$.

A. Montanari, G. Semerjian On the relation between length and time scales in glassy systems

Take
$$f = f(x_i)$$
 s.t. $\langle f \rangle = 0$,
and $r = \ell_i(\varepsilon)/2$:

$\varepsilon \leq \langle f \langle f \rangle_{i,r} \rangle = \lim_{t \to \infty} \langle f(0)f(t) \rangle_{(2)} \leq \langle f(0)f(\tau) \rangle_{(2)} \approx \langle f(0)f(\tau) \rangle_{(2)} \,.$ If $\tau = \delta \cdot r$.

- 4 同 6 4 日 6 4 日 6

Take
$$f = f(x_i)$$
 s.t. $\langle f \rangle = 0$,
and $r = \ell_i(\varepsilon)/2$:

$\varepsilon \leq \langle f \langle f \rangle_{i,r} \rangle = \lim_{t \to \infty} \langle f(0)f(t) \rangle_{(2)} \leq \langle f(0)f(\tau) \rangle_{(2)} \approx \langle f(0)f(\tau) \rangle_{(2)} \,.$ If $\tau = \delta \cdot r$.

Take
$$f = f(x_i)$$
 s.t. $\langle f \rangle = 0$,
and $r = \ell_i(\varepsilon)/2$:

$\varepsilon \leq \langle f \langle f \rangle_{i,r} \rangle = \lim_{t \to \infty} \langle f(0)f(t) \rangle_{(2)} \leq \langle f(0)f(\tau) \rangle_{(2)} \approx \langle f(0)f(\tau) \rangle_{(2)} .$ If $\tau = \delta \cdot r$.

Take
$$f = f(x_i)$$
 s.t. $\langle f \rangle = 0$,
and $r = \ell_i(\varepsilon)/2$:

$$\varepsilon \leq \langle f \langle f \rangle_{i,r} \rangle = \lim_{t \to \infty} \langle f(0)f(t) \rangle_{(2)} \leq \langle f(0)f(\tau) \rangle_{(2)} \approx \langle f(0)f(\tau) \rangle_{(2)} .$$

If $\tau = \delta \cdot r$.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Sketch of the proof (upper bound)

$$\langle f(x_i(0))f(x_i(\tau))\rangle = \left\langle \langle f(x_i'(0))f(x_i'(\tau))\rangle_{i,r}^{\{x(t)\}} \right\rangle$$

□ > < = > <

Take $r = \ell$ and $t = \exp\{C|\mathsf{Ball}(i,\ell)|\}$.

$$egin{aligned} &\langle f(x_i(0))f(x_i(au))
angle &= \left\langle \langle f(x_i'(0))f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &pprox \left\langle \langle f(x_i(0))
angle_{i,r}^{\{x(t)\}}\langle f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &= \left\langle f(x_i)F(x_{\sim i,r})
ight
angle \leq arepsilon \end{aligned}$$

イロト イポト イヨト イヨト

Take $r = \ell$ and $t = \exp\{C|\mathsf{Ball}(i,\ell)|\}$.

$$egin{aligned} &\langle f(x_i(0))f(x_i(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &pprox \left\langle \langle f(x_i(0))
angle_{i,r}^{\{x(t)\}}\langle f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &= \langle f(x_i)F(x_{\sim i,r})
angle \leq arepsilon \end{aligned}$$

3

Take $r = \ell$ and $t = \exp\{C|\mathsf{Ball}(i,\ell)|\}$.

$$egin{aligned} &\langle f(x_i(0))f(x_i(au))
angle &= \left\langle \langle f(x_i'(0))f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &pprox \left\langle \langle f(x_i(0))
angle_{i,r}^{\{x(t)\}}\langle f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \ &= \left\langle f(x_i)F(x_{\sim i,r})
ight
angle \leq arepsilon \end{aligned}$$

3

Take $r = \ell$ and $t = \exp\{C|\mathsf{Ball}(i,\ell)|\}$.

$$\begin{split} \langle f(x_i(0))f(x_i(au))
angle &= \left\langle \langle f(x_i'(0))f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \\ &pprox \left\langle \langle f(x_i(0))
angle_{i,r}^{\{x(t)\}}\langle f(x_i'(au))
angle_{i,r}^{\{x(t)\}}
ight
angle \\ &= \langle f(x_i)F(x_{\sim i,r})
angle \leq arepsilon \end{split}$$

3

The exact relation: a glimpse from mean field

Two models on random sparse graphs:

p-spin:

$$H(\sigma) = -\beta \sum_{(i_1 \dots i_p) \in G} J_{i_1 \dots i_p} \sigma_{i_1} \cdots \sigma_{i_p} .$$
⁽¹⁾

FA model

$$H(n) = -\beta \sum_{i \in G} n_i \tag{2}$$

modify definitions for this!

The exact relation: a glimpse from mean field

Two models on random sparse graphs:

p-spin:

$$H(\sigma) = -\beta \sum_{(i_1 \dots i_p) \in G} J_{i_1 \dots i_p} \sigma_{i_1} \cdots \sigma_{i_p} .$$
⁽¹⁾

FA model

$$H(n) = -\beta \sum_{i \in G} n_i \tag{2}$$

modify definitions for this!

3 N

Schematic phase diagram

$1\frac{1}{2}$ order phase transition at $\alpha_{d}(T)$.

$$\ell_i \sim (lpha_{
m d} - lpha)^{-1/2}$$
 .

[AM/Semerjian, AM/Mézard]

Numerically

$$\tau_i \sim (\alpha_{\rm d} - \alpha)^{-\gamma}$$

 $\gamma > 1.$ (Activation energy \ll volume)

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\ell_i \sim (\alpha_{\rm d} - \alpha)^{-1/2}$$

[AM/Semerjian, AM/Mézard]

Numerically

$$\tau_i \sim (\alpha_{\rm d} - \alpha)^{-\gamma}$$

 $\gamma > 1$. (Activation energy \ll volume)

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\ell_i \sim (\alpha_{\rm d} - \alpha)^{-1/2}$$

[AM/Semerjian, AM/Mézard]

Numerically

$$\tau_i \sim (\alpha_{\rm d} - \alpha)^{-\gamma}$$

 $\gamma > 1.$ (Activation energy \ll volume)

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution of the puzzle

MCT-like exponents ν and Υ

・ 同 ト ・ ヨ ト ・ ヨ ト

A. Montanari, G. Semerjian On the relation between length and time scales in glassy systems

Open problems

- Relation between ℓ and 4-point functions (partial results).
- Dynamic scaling in mean field: $\tau \sim \ell^z$.
- Geometry of excitations in finite *d*.