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Jean-Philippe Bouchaud (Jan 10, 2006)

Finite range systems: no diverging time scale without a
diverging time scale.
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This talk

Proposition

` ≤ τ ≤ exp{O(`d)} .

Physical intuition:

` ≤ τ → information must propagate through a
correlated region.

τ ≤ exp{O(`d)} → the system can be broken in boxes of size `.
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It’s an obvious result.

Space vs. time correlations is a classical problem (Holley,
Aizenmann, Zegarlinski, Stroock, Martinelli, Olivieri,. . . ).

So, why bother proving anything?
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Why bother?

(1) Classical results ill-suited to ‘glassy’ systems.

‘Global’ quantities (e.g. spectral gap of the dynamics).

Control of arbitrary b.c.’s.
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Why bother?

(2) What are ` and τ?

Near a glass transition:

No sign of criticality in static 2-point functions
(e.g. 〈ρ(x)ρ(y)〉).

Dramatic increase of relaxation time scales.
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Why bother?

(3) After all, not so obvious.

And can indeed be false for carefully chosen models.
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What is this talk about
A few examples of glassy systems

Example (1): Antiferromagnetic Potts model on
sparse random graphs

G = (V ,E ): graph with degree k.
Configuration: x = {xi ; i ∈ V }, xi ∈ {1, . . . , q}

H(x) =
∑

(i ,j)∈E

I(xi = xj) .

Heath-bath dynamics at temperature T .

G is a uniformly random graph, and k > k∗(q)
↓

Ideal glass transition at Td > 0.
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q-Coloring random graphs

Given a graph G , find a proper q-coloring of G .
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What is this talk about
A few examples of glassy systems

Example (2): Lattice glass (Biroli-Mézard)

G = 1, . . . , Ld : d dimensional lattice
n = {ni : i ∈ G}, ni ∈ {0, 1}.

H(n) = −µ
∑

i

ni + β
∑

i

ni I(
∑

|j−i |=1

nj ≥ m) .

Sluggish dynamics at large µ, β.

No signature in the two point susceptibility.
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m = 3 .

H(n) = −16µ + 2β .
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General definitions (statics)

Configuration : x = {xi : i = 1, . . . ,N} ∈ XN , (X finite set).

Energy function : E (x) =
∑M

a=1 Ea(xi1(a), . . . , xik (a)).

Gibbs distribution: µ(x) ∝ exp {−E (x)}.
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Graph representation: E (x) = Ea(x1, x2, x4) + Eb(x1, x2) + . . .

d(i , j) = . . .
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General definitions (dynamics)

Initial configurations x(0) ∼ µ.

The spin xi tries to flip in the interval dt with probability dt.

xi changes to x ′i with probability κx
i (x

′
i ) depending only on the

neighbors of i (locality).

Aperiodic, irreducible + detailed balance

µ(x)κx
i (x

′
i ) = µ(x)κx

i (x
′
i ).
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Hypotheses

1. Degree ≤ k < ∞.

2. For each i there exist a permitted (‘empty’) state x∗i s.t.
µ(x∗i |x∼i ) ≥ µ∗ > 0.

3. For each i , κx
i (x

∗
i ) ≥ κ∗ > 0
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General definitions (time scale)

Ci (t) ≡ max
f :|f (x)|≤1

[
〈f (xi (0))f (xi (t))〉 − 〈f (xi (0))〉〈f (xi (t))〉

]
.

τi (ε) ≡ inf{t : Ci (t) ≤ ε} .

ε a fixed small number (e.g. 0.01).
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Length scale: an alternative definition.

〈f (xi )〉yi ,r conditional expectation on Ball(i , r) with b.c. y .

y

xi
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G ′
i (r) = max

f :|f (x)|≤1

∣∣∣〈f (xi )〈f (x ′i )〉xi ,r 〉 − 〈f (xi )〉2
∣∣∣ .

τ ′i (ε) ≡ inf{r : . . . }

Bouchaud-Biroli:

Pick an equilibrium reference configuration ...
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Proposition

C1`i (ε
′) ≤ τi (ε) ≤ exp

{
C2|Ball(i , `i (ε

′′))|
}

.

where ε′ = c1ε
1/2, and ε′′ = c2ε

2.
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Sketch of the proof (lower bound)

(via coupling and disagreement percolation, Häggstrom, Sinclair,
Peres, etc. . . )
Take two copies of the system, initialize with a thermalized
configuration and run them in parallel:

Usual dynamics. Never flips in G\Ball(i , r).
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Take f = f (xi ) s.t. 〈f 〉 = 0,
and r = `i (ε)/2:

ε ≤ 〈f 〈f 〉i ,r 〉 = lim
t→∞

〈f (0)f (t)〉(2) ≤ 〈f (0)f (τ)〉(2) ≈ 〈f (0)f (τ)〉(2) .

If τ = δ · r .
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Sketch of the proof (upper bound)

=

〈f (xi (0))f (xi (τ))〉 =
〈
〈f (x ′i (0))f (x ′i (τ))〉{x(t)}

i ,r

〉
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≈

〈
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〉
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The exact relation: a glimpse from mean field

Two models on random sparse graphs:

p-spin:

H(σ) = −β
∑

(i1...ip)∈G

Ji1...ipσi1 · · ·σip . (1)

FA model

H(n) = −β
∑
i∈G

ni (2)

modify definitions for this!
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H(σ) = −β
∑

(i1...ip)∈G

Ji1...ipσi1 · · ·σip . (1)

FA model

H(n) = −β
∑
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ni (2)

modify definitions for this!
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Schematic phase diagram

1 1
2 order phase transition at αd(T ).

T

α

Td

Tc

αcαd
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`i ∼ (αd − α)−1/2 .

[AM/Semerjian, AM/Mézard]

Numerically

τi ∼ (αd − α)−γ

γ > 1. (Activation energy � volume)
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Solution of the puzzle

−Υ log(αd − α)

(αd − α)−ν

(αd − α)−1/2

MCT-like exponents ν and Υ
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Open problems

Relation between ` and 4-point functions (partial results).

Dynamic scaling in mean field: τ ∼ `z .

Geometry of excitations in finite d .
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