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Metastable states, relaxation times and free-energy

barriers in finite dimensional glassy systems

Silvio Franz, ICTP Trieste

• Introduction

• Metastable states: Lebowitz-Penrose theory

• Disordered Kac model: Dynamics in the Kac limit and metastability

• Relaxation time and Free-energy barrier
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The Problem

Relaxation in Supercooled Liquids

Approximated liquid theories (Mode Coupling Theory) and Mean-field

theory (Random 1st order transition 1RSB) [long range p-spin model]:

• Spurious Dynamical Ergodicity Breaking at TC .

• Power law divergence τ ∼ |T − Tc|−α Infinite life metastable states below

Tc.
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Two transitions: 1) Tc broken ergodicity transition

• # of ergodic components N ∼ exp(NΣ(T ))

2) Tk (< Tc) entropy crisis transition Σ(Tk) = 0
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Effective potential

S0 reference config. chosen with canonical probability e−βH(S0)

Order parameter: Overlap

q(S,S′) =
1

N

∑

i

Si, S
′

i

V (q) =
−T

N
EJES0

log
1

Z

∑

S

e−βH(S)δ(q(S,S0)− q)
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Non perturbative approach Random 1st order transition

• Kirkpatrick-Thirumalai-Wolynes entropic droplets and mosaic state

• Parisi: effective potential

• Biroli-Bouchaud: mosaic state “explained”

• SF Instanton Calculation of free-energy barrier long-but-finite range

(Kac)

Description of supercooled state as Locally mean field-like and glassy; liquid

on a large scale Biroli-Bouchaud argument

Fix the system at a generic equilibrium configuration outside a ball of radius

R.

Configurational entropy as the bulk driving force to ergodicity restoration.

∆F = −TΣRd + ΓRθ

Strong correlations for R > R∗, R∗ ∼ (Γ/Σ)
1/(d−θ)

typical “mosaic length”

∆F ∗ ∼ Γ
d+θ
d−θ /Σ

θ
d−θ ∼ C/(T − TK)

θ
d−θ
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A first principle approach

Quenched Potential

τ reference, generic equilibrium state.

VQ({qx}) = −
T

N
E

1

Z

∑

τ

e−βH(τ) log

[

1

Z

∑

σ

e−βH(σ)δ (qx(σ, τ)− qx)

]

.

Overlap profile

Study as a function of R if the system remain close to the reference state.

R∗ critical radius in a nucleation like theory.

Variant of the replica method to evaluate VQ.

Computation in long-but-finite range model (Kac).

Finite surface tension σ → θ = d− 1P
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No explicit connection between free-energy barrier and relaxation

time.

Goal: provide this connection

• Describe metastable states in disordered systems

• Characterize typical liquid configuration as metastable states

• use quasi-equilibrium to relate relaxation time to free-energy barrier

• Kac models: close (but not too much) to Mean Field
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Systems with long-but-finite interaction range (Kac 1959)

H = −
∑

i<j

γdφ(γ|i− j|)SiSj − h
∑

i

Si

• L System size

• γ−1 interaction range; ≈ γ−d interactions per spin each of strength γd

Classical models of Mathematical Statistical Physics

Emphasize the role if the interaction range in the Mean Field pathologies

γ = 1/L Mean Field

γ > 0 Finite Range

Kac limit: γ → 0 After the thermodynamic limit L→∞.

Lebowitz-Penrose theorem (1966): For all D, Mean-Field free-energy +

Maxwell construction
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Eliminate most evident pathologies

Interfaces restore convexity of free-energy

 0

 10

 20

 30

 40

 50

 60

 70

 80

-6 -4 -2  0  2  4  6

Ferromagnets: rigorous (asymptotic) expansion around Mean Field
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Lebowitz-Penrose Theory of Metastability

Systems with first order transition
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Secondary minimum at m∗ metastable state

For finite range interaction the life time is finite

Characterization of Metastable States

• Homogeneous states where thermodynamics holds

• “long” life time

• even longer return time(no return)P
a
g
e
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Kac model again

H = −
∑

i<j

γdφ(γ|i− j|)SiSj − h
∑

i

Si

• L System size

• γ−1 interaction range

• ` homogeneity length

logL << ` << γ−1 << L

Partition space in boxes Bx of linear size `

Consider I = [m−, 1] 3 m∗, mx(S) = 1
`d

∑

i∈Bx
Si

R = {S|mx(S) ∈ I}

The Metastable state is

µ(S) =
1

ZR
e−βH(S)1R(S)
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Relaxation rate

λ =
∑

S′ /∈R S∈R

µ(S)W (S→ S′)

Local Dynamics if S′ /∈ R and W 6= 0 then S ∈ ∂R

∂R = {S ∈ R|∃x0 mx0
(S) = m−}

λ ≤
∑

S∈∂R

µ(S) =
Z∂R

ZR
= e−β∆F

Lebowitz-Penrose estimate ∆F > C`d

Self-consistent determination of m− as the value that maximizes ∆F .

Nucleation theory, instantons... ∆F ∼ γ−d.

Return rate ZR/Z ∼ exp(−ALd) << λ
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The Model

Λ d-Cube of size L

Hγ,L,J = −
1

p!

∑

i1,...ip∈Λ

Ji1,...ip
Si1 ...Sip

E(J2
i1,...,ip

) = γpd
∑

k∈Λ

ψ(γ|i1 − k|)...ψ(γ|ip − k|)

∫

dx ψ(x) = 1

γ−1 interaction range MF for γ−1 = L.

Local Spherical Constraint: length `. Partition of Λ in boxes Bx of linear

size `
∑

i∈Bx

S2
i = `d
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Thermodynamics in the Kac limit

(SF and F.L. Toninelli)

γ → 0 after L→∞

Theorem 1 For all dimension D, temperatures T magnetic field h, and p

even, the infinite volume free-energy of the Kac model tends to the

free-energy of the mean-field p-spin model in the Kac limit γ → 0.

Theorem 2 The local order parameter (local overlap probability distribution

on scales γ−1) tends to the MF order parameter for γ → 0.
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Equilibrium Dynamics

1 << ` << γ−1 << L

` >> logL

Suppress events with a prob. ∼ Ld exp(−a`d)

e.g. ` = γ−δ, 0 < δ < 1

Langevin dynamics for spherical spins

Analysis of Correlation function Cx(t) = 1
`d

∑

i∈Bx
Si(t)Si(0)

S(0)→ exp(−βH(S0))

Kac limit: L→∞, γ → 0 for t <∞ Cx(t)→ C(t) homogeneous in space

and verifies the MF equation

dC(t)

dt
= −TC(t) +

pβ

2

∫ t

0

ds Cp−1(t− s)
dC(s)

ds
.

MSR or dynamical cavity show that γ−d plays the role of N in the usual MF

derivation.
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Ergodicity breaking for γ → 0, ergodicity for any γ > 0

• limγ→0 C
γ
x (t) = C(t)→ qEA (t→∞ equilibrium in one state)

• limt→∞ Cγ
x (t) = 0 = Equilibrium value (γ > 0 ergodicity)
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Time scale separation: τ erg
γ >> τMF
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Metastable States

I = [q−, 1] 3 qEA

τ = S(0) initial state of the dynamics Typical equil. configuration

qn(σ, τ) = 1
`d

∑

i∈Bn
σiτi

R = {σ|qn(σ, τ) ∈ I}

Previous discussion: Equilibrium in R before relaxing further

Lebowitz-Penrose characterization

• Homogeneities and thermodynamics

• large time to escape

• huge time to come back

Dynamics dominated by Metastable states.
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Relaxation rate

Initially

µ(σ) =
1

ZR
e−βH(σ)1R(σ)

Escape rate

λ =
∑

σ′∈R;σ/∈R

W (σ ← σ′)µ(σ′) ≤
∑

σ′∈∂R

µ(σ′) = Z∂R/ZR

∂R = {σ ∈ R | ∃ n, qn(σ, τ) = q−}

Typical value of λ = λ(τ, J):

log λtyp = EJEτ (logZ∂R − logZR)

Starting point for a purely statical computation of the relaxation rate.

Replica method evaluation of EJEτZR and EJEτZ∂R

P
a
g
e

1
6



.

Results

• Precise definition of metastable configurations

• Identification typical liquid configuration as metastable states

• Shown that Lebowitz-Penrose criteria are respected

• Identified a free-energy barrier related to the relaxation time.
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Q: is this free-energy barrier the one that appear to describe the mosaic

state ?

Free-energy barrier

By the previous discussion one has that ZR is dominated by the constant

profile qx = qEA ∀ x.

ZR ≈ e
LdVMF (qEA)

Consider for finite L, the constrained free-energy Wτ [qx] defined by

e
−

β

γd Wτ [qx]
=

∑

S

e−βH(S)
∏

x

δ(qx(S, τ)− qx)

V [qx] = EJEτ (Wτ [qx])

then

Z∂R =
∑

x0

∫

qx∈I; qx0
=q−

Dq e
−

β

γd Wτ [qx]

One can expect that a single J − τ dependent profile dominates each term of

the sum.
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Is the knowledge of V [qx] enough ?

Previous calculations aimed to compute:

Z∂R ≈

(

L

`

)d ∫

qx∈I; q0=q−

Dq e
−

β

γd V [qx]

Nucleation theory

∆F = RdTΣ− νRd−1

Istanton calculation based on V give: ν(TK) > 0

∆F ≈
νd

γdΣd−1
≈

1

γd(T − TK)d−1
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Strong hypothesis

Almost all sites x0 give similar contributions and these dominate the

relaxation rate. In that case, denote q∗x the profile maximizing V [qx]

λ =

(

L

`

)d

e
−

β

γd (V [q∗

x]−V [qx=qEA])
.

The incipient spatial heterogeneities on a scale γ−1 responsible for relaxation,

have for almost all J, τ equal probability of appearing in any point of space.

Is this hypothesis true ?

Compute directly Z∂R (e.g. with replicas) and see.

Possible way of changing the annoying d− 1 exponent in the Vogel-Fulcher

like relation.
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