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Introduction
Metastable states: Lebowitz-Penrose theory
Disordered Kac model: Dynamics in the Kac limit and metastability

Relaxation time and Free-energy barrier




The Problem

Relaxation in Supercooled Liquids

Approximated liquid theories (Mode Coupling Theory) and Mean-field
theory (Random 1% order transition 1RSB) [long range p-spin modell:

e Spurious Dynamical Ergodicity Breaking at T-.

e Power law divergence 7 ~ |T — T.|~ Infinite life metastable states below
Te.
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Two transitions: 1) T, broken ergodicity transition

e # of ergodic components N ~ exp(N3(T))

2) Ty (< T¢) entropy crisis transition 3(7Ty) =0




Effective potential

SY reference config. chosen with canonical probability e =/ (8%)
Order parameter: Overlap
¢(S,8') = ZSZ,S’
V(g) = 5 EsBs log - 3 e )5(g(8,5°) — g)
N TR TR 7 £ ’

Vigea) — V(0) =T%




Non perturbative approach Random 1% order transition
e Kirkpatrick-Thirumalai-Wolynes entropic droplets and mosaic state
e Parisi: effective potential
e Biroli-Bouchaud: mosaic state “explained”

e SF Instanton Calculation of free-energy barrier long-but-finite range
(Kac)

Description of supercooled state as Locally mean field-like and glassy; liquid
on a large scale Biroli-Bouchaud argument

Fix the system at a generic equilibrium configuration outside a ball of radius

R.
Configurational entropy as the bulk driving force to ergodicity restoration.
AF = -TSR*+ TR’

Strong correlations for R > R*, R* ~ (I'/ E)l/ (4=0) typical “mosaic length”

d4-6

AF* ~TT0 /77 ~ C)(T — T )70




A first principle approach
Quenched Potential

T reference, generic equilibrium state.
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Overlap profile

Study as a function of R if the system remain close to the reference state.
R* critical radius in a nucleation like theory.

Variant of the replica method to evaluate V.

Computation in long-but-finite range model (Kac).

Finite surface tension o0 — 0 = d — 1




No explicit connection between free-energy barrier and relaxation

time.

Goal: provide this connection
e Describe metastable states in disordered systems
e Characterize typical liquid configuration as metastable states
e use quasi-equilibrium to relate relaxation time to free-energy barrier

e Kac models: close (but not too much) to Mean Field




Systems with long-but-finite interaction range (Kac 1959)
H=-> ~v%(yli - hZS
1<

e [, System size

1 —d d

e 7 interaction range; ~ v~ ¢ interactions per spin each of strength ~
Classical models of Mathematical Statistical Physics

Emphasize the role if the interaction range in the Mean Field pathologies

v=1/L Mean Field
~v > 0 Finite Range

Kac limit: v — 0 After the thermodynamic limit L — oc.

Lebowitz-Penrose theorem (1966): For all D, Mean-Field free-energy +

Maxwell construction




Eliminate most evident pathologies

Interfaces restore convexity of free-energy
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Ferromagnets: rigorous (asymptotic) expansion around Mean Field




Lebowitz-Penrose Theory of Metastability

Systems with first order transition

Secondary minimum at m™ metastable state
For finite range interaction the life time is finite

Characterization of Metastable States
e Homogeneous states where thermodynamics holds
o “long” life time

e cven longer return time(no return)




Kac model again
H==3% 7"%(li = j)S:S; ~h) S,
i<j i
e [, System size

1

e 7 Interaction range

e / homogeneity length
logL <<l <<~y t<<L
Partition space in boxes B, of linear size /
Consider I = [m_,1] > m*, m.(S)= 7> .5 Si
R ={S|m,(S) € I}

The Metastable state is

I _
u(S) = 7:° PSR (8)




Relaxation rate

A= Y uS)W(S—9)
S'¢R SER

Local Dynamics if " ¢ R and W # 0 then S € OR

OR ={S € R|3dxg m4,(S)=m_}

Zy N
A< Z M(S):—Z: — g7 PAF

Lebowitz-Penrose estimate AF > C/¢4

Self-consistent determination of m_ as the value that maximizes AF.

Nucleation theory, instantons... AF ~ ~ 4,

Return rate Zr/Z ~ exp(—AL%) << )




The Model
A d-Cube of size L

ny,L,J:—l Z Jir iy Siq S,

E(J} ) =" (yliy — k])..ap(v]ip — k)

""" keA
/dx Y(z) =1

~v~! interaction range MF for v~ ! = L.

Local Spherical Constraint: length ¢. Partition of A in boxes B, of linear

size ¢

> o sp =1

1€B,




Thermodynamics in the Kac limit

(SF and F.L. Toninelli)

~v — 0 after L — oo

Theorem 1 For all dimension D, temperatures I' magnetic field h, and p
even, the infinite volume free-enerqy of the Kac model tends to the

free-energy of the mean-field p-spin model in the Kac limit v — 0.

Theorem 2 The local order parameter (local overlap probability distribution

on scales v~ 1) tends to the MF order parameter for v — 0.




Equilibrium Dynamics

1

l << /l<<y " <<L

¢ >>log L

Suppress events with a prob. ~ L% exp(—at?)
eg. =72 0<d§<1
Langevin dynamics for spherical spins

Analysis of Correlation function Cy(t) = 25 > ,c 5. Si(1)Si(0)
S(0) — exp(—BH(Sp))

Kac limit: L — oo, v — 0 for t < oo C,(t) — C(t) homogeneous in space
and verifies the MF equation

ic(r) P8 (1 i dC(s)
7——T0(t>—|—7 Odst (t —s) P

MSR or dynamical cavity show that v~¢ plays the role of N in the usual MF

derivation.




Ergodicity breaking for v — 0, ergodicity for any v > 0
o lim, (CJ(t) =C(t) — qra (t — oo equilibrium in one state)

o lim; ., C)(t) =0= Equilibrium value (v > 0 ergodicity)
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Time scale separation: 7579 >> 1y p




Metastable States
I'=1[q-,1] > qpa
7 = 5(0) initial state of the dynamics Typical equil. configuration
n(0,T) = zid Zz’EBn OiTi
R =Aol|q,(o,7) € I}

Previous discussion: Equilibrium in R before relaxing further
Lebowitz-Penrose characterization

e Homogeneities and thermodynamics

e large time to escape

e huge time to come back

Dynamics dominated by Metastable states.




Relaxation rate

Initially

I o
wlo) = ——e O g (o)
R

Escape rate

A= S W e o) £ Y o) = Zon/Zn

oc’'€ER;0&R o’€OR

OR={o € R|3n, gu(o,7) = q}

Typical value of A\ = A(7, J):

log A\typ = EjE (log Zor — log ZR)

Starting point for a purely statical computation of the relaxation rate.

Replica method evaluation of F/;E, Zr and EjE, ZsRr




Results

Precise definition of metastable configurations
Identification typical liquid configuration as metastable states
Shown that Lebowitz-Penrose criteria are respected

Identified a free-energy barrier related to the relaxation time.




(Q: is this free-energy barrier the one that appear to describe the mosaic

state 7
Free-energy barrier

By the previous discussion one has that Zr is dominated by the constant

profile ¢, = qra V .
A 6LdVMF(QEA)

Consider for finite L, the constrained free-energy W |q,| defined by

6—%"‘@[%] _ Z€—5H<S> Hé(qx(S, T) = 4)
S X

V[Qw] — EJET (WT [Qx])

then
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One can expect that a single J — 7 dependent profile dominates each term of

the sum.




Is the knowledge of V[q,] enough ?

Previous calculations aimed to compute:

d
L _ B
“on <Z> / Dg e 7"
qz€1; qo=q—

Nucleation theory
AF = RYTY, — vR*!

Istanton calculation based on V' give: v(Tk) > 0

AF A~ 4 N 1
T oydyd—1 ~U(T — T )d—1




Strong hypothesis

Almost all sites xg give similar contributions and these dominate the

relaxation rate. In that case, denote ¢! the profile maximizing V'[q. |

d
\ = (L) ~ 2 (VIg)-Vig=apa))

~

1

The incipient spatial heterogeneities on a scale v~ " responsible for relaxation,

have for almost all J, 7 equal probability of appearing in any point of space.
Is this hypothesis true ?

Compute directly Zyr (e.g. with replicas) and see.

Possible way of changing the annoying d — 1 exponent in the Vogel-Fulcher

like relation.




