Game Semantics and its Algorithmic Applications

(Lecture 3: Infinite Trees, Recursion Schemes and Game Semantics)

Luke Ong
Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/
Synopsis of Application 1

Problem: Find classes of finitely-presentable infinite-state systems with decidable MSO theories.

The hierarchy of trees generated by higher-order recursion schemes is an example of such a class, and it is a unifying framework.

We survey old and more recent work on a related hierarchy of recursion schemes satisfying the safety constraint, which are equivalent (as tree generators) to higher-order pushdown automata.

Digression. Safe Lambda Calculus: Questions and Possible Directions

Main Theorem and its Game-Semantic Proof:

Theorem. The modal mu-calculus model checking problem for trees generated by order-\(n\) recursion schemes (whether safe or not) is \(n\)-EXPTIME complete, for each \(n \geq 0\).

Many further directions.
Outline of Talk

1. **Level-\(n\) Recursion Schemes and their Value Trees**
2. A Model-Checking Problem
3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees
4. The Safe Lambda Calculus
5. The Theorem and Proof Outline
Order of a Type

Types are ranged over by A, B, \cdots.

$$A ::= o \mid (A \to B)$$

Every type can be written uniquely as

$$A_1 \to \cdots \to A_n \to o, \quad n \geq 0$$

(arrows associate to the right), which is then abbreviated to (A_1, \cdots, A_n, o). The order of a type measures how nested it is on the LHS of the arrow.

$$\text{order}(o) = 0$$

$$\text{order}(A \to B) = \max(\text{order}(A) + 1, \text{order}(B))$$

Notation. $e : A$ means “expression e has type A”.
Order-\(n\) (Deterministic) Recursion Scheme \(G = (\mathcal{N}, \Sigma, \mathcal{R}, S')\)

Fix a set \(Var\) of typed variables.

- \(\mathcal{N}\): Typed non-terminals of order at most \(n\), \(D : A_1 \to \cdots \to A_m \to o\), including a distinguished start symbol \(S : o\).

- \(\Sigma\): Ranked alphabet of terminals: \(f \in \Sigma\) has arity \(\text{ar}(f) \geq 0\), with \(f : o \to \cdots \to o \to o\) (written \(o^{\text{ar}(f)} \to o\))

- \(\mathcal{R}\): An equation for each non-terminal \(D : A_1 \to \cdots \to A_m \to o\) of the shape

\[
D \varphi_1 \cdots \varphi_m = e
\]

where the applicative term \(e : o\) is constructed from

- terminals \(f, g, a, \text{etc.}\) from \(\Sigma\)
- variables \(\varphi_1 : A_1, \cdots, \varphi_m : A_m\) from \(Var\),
- non-terminals \(D, F, G, \text{etc.}\) from \(\mathcal{N} - \{S\}\)
Examples

Set $\Sigma = \{ f, f' : o^2 \to o, \ g : o \to o, \ a : o \}$.

1. An order-0 example: No variables!

$$G_1 : \begin{cases}
S &= f \top \top \\
T &= f' \top \top \\
U &= f \top \top
\end{cases}$$

2. An order-2 example.

$$B : (o \to o) \to (o \to o) \to o \to o, \quad F : (o \to o) \to o$$

$$G_2 : \begin{cases}
S &= F \varphi x \\
B \varphi \psi x &= \varphi(\psi x) \\
F \varphi &= f(\varphi a)(F(B \varphi \varphi))
\end{cases}$$
The \textit{value tree} $[G]$ of a recursion scheme G is a possibly infinite applicative term \textit{constructed from the terminals}, which is obtained by unfolding the equations \textit{ad infinitum}, replacing formal by actual parameters each time, starting from S.

Example. $\Sigma = \{f, g, a\}$. Take

$$G_1 : \begin{cases} S = F a \\ F x = f x (F (g x)) \end{cases}$$

We have $[G_1] = f a (f (g a) (f (g (g a)))(\cdots))$.

We view the infinite term $[G]$ as a Σ-\textit{labelled (ranked and ordered) tree} (generated by G).

Formally a Σ-\textit{labelled tree} is a function $t : \text{dom}(t) \rightarrow \Sigma$ such that $\text{dom}(t) \subseteq \{1, \cdots, m\}^*$ is prefix-closed, and for all nodes $\alpha \in T$, the Σ-symbol $t(\alpha) \in \Sigma$ has arity k iff α has k children, namely $\alpha 1, \cdots, \alpha k \in T$.
An order-2 example.

\(\Sigma = \{ f, g, a \} \). \(B : (o \to o) \to (o \to o) \to o \to o, \quad F : (o \to o) \to o \)

\[
\begin{align*}
G_2 : & \quad S = F g \\
& \quad B \varphi \psi x = \varphi (\psi x) \\
& \quad F \varphi = f (\varphi a) (F (B \varphi \varphi))
\end{align*}
\]

The value tree, \([G_2] : \{1, 2\}^* \to \Sigma \), is:

\[
\begin{align*}
\epsilon & \mapsto f & 11 & \mapsto a \\
1 & \mapsto g & 21 & \mapsto g \\
2 & \mapsto f & 22 & \mapsto f \\
\ldots & \mapsto & \ldots & \\
\end{align*}
\]
Outline of Talk

1. Level-n Recursion Schemes and their Value Trees
2. A Model-Checking Problem
3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees
4. The Safe Lambda Calculus
5. The Theorem and Proof Outline
A Model Checking Problem

Parametrized over logical language \mathcal{L} and $n \geq 0$.

Model Checking Problem (\mathcal{L}, order-n Σ-labelled trees)

\[
\begin{align*}
\text{INSTANCE:} & \quad \text{An order-}n \text{ recursion scheme } G, \text{ and a formula } \varphi \in \mathcal{L} \\
\text{QUESTION:} & \quad \text{Does the } \Sigma\text{-labelled tree } [G] \text{ satisfy } \varphi?
\end{align*}
\]

Here we only consider $\mathcal{L} =$

- Monadic Second-Order Logic, and
- Modal mu-calculus.

Many other possibilities for further investigations: complexity of sublogics.
Monadic Second-Order Logic (for Σ-labelled trees $t : T \rightarrow \Sigma$)

First-order variables: x, y, z, etc. (ranging over nodes, which are finite words over $\{1, \cdots, m\}$, for a fixed m)

Second-order variables: X, Y, Z, etc. (ranging over sets of nodes i.e. monadic relations)

MSO formulas are built up from atomic formulas:

1. Parent-child relationship between nodes: $d_i(x, y) \equiv \text{“}y \text{ is } i\text{-child of } x\text{”}$

2. Node labelling: $p_f(x) \equiv \text{“}x \text{ has label } f\text{”}$ where f is a Σ-symbol

3. Set-membership: $x \in X$

and closed under

- boolean connectives: \neg, \lor etc.

- first-order quantifications: $\forall x.\neg$, $\exists x.\neg$

- second-order quantifications: $\forall X.\neg$, $\exists X.\neg$.

Game Semantics and its Algorithmic Applications: Lecture 3, Newton Institute, February 2006. 11
Why MSO Logic?

It is a kind of gold standard!

MSO is very expressive. Over graphs, MSO is strictly more expressive than the modal mu-calculus, into which all standard temporal logics (e.g. LTL, CTL, CTL*, etc.) can embed.

Over trees, modal mu-calculus is as expressive as (but algorithmically more tractable than) **MSO**: For every MSO φ, there is a modal mu-calculus formula p_φ s.t. for every Σ-labelled tree t, we have $t \models \varphi \iff t, \varepsilon \models p_\varphi$.

Any obvious extension of MSO would break decidability. Either of the following would permit an encoding of a Turing machine:

- Second-order quantification over binary relations.
- Freely interpretable binary relations in the vocabulary.

E.g. $T_a(i, t) = \text{“}i\text{-th cell of the semi-infinite tape contains } a \in \Sigma \text{ at time } t\text{”}.$
Examples of MSO-definable properties

Several useful relations are definable:

1. **Set inclusion** (and hence equality): $X \subseteq Y \equiv \forall x . x \in X \rightarrow x \in Y$.

2. “Is-an-ancestor-of” or prefix ordering $x \leq y$ (and hence $x = y$):

 \[
 \text{PrefCl}(X) \equiv \forall xy . y \in X \land \bigvee_{i=1}^{m} d_i(x, y) \rightarrow x \in X
 \]

 \[
 x \leq y \equiv \forall X . \text{PrefCl}(X) \land y \in X \rightarrow x \in X
 \]

Reachability property: “X is a path”

\[
\text{Path}(X) \equiv \forall xy \in X . x \leq y \lor y \leq x
\]

\[
\land \forall xyz . x \in X \land z \in X \land x \leq y \leq z \rightarrow y \in X
\]

\[
\text{MaxPath}(X) \equiv \text{Path}(X) \land \forall Y . \text{Path}(Y) \land X \subseteq Y \rightarrow Y \subseteq X.
\]
Recurrence Property

A set of nodes is a cut if no two nodes in it are \leq-compatible, and it has a non-empty intersection with every maximal path.

$$\text{Cut}(X) \equiv \forall xy \in X . \neg(x \leq y \lor y \leq x)$$

$$\land \forall Z . \text{MaxPath}(Z) \rightarrow \exists z \in Z . z \in X$$

Fact. A set X of nodes in a finitely-branching tree is finite iff there is a cut C such that every X-node is a prefix of some C-node.

$$\text{Finite}(X) \equiv \exists Y . \text{Cut}(Y) \land \forall x \in X . \exists y \in Y . x \leq y$$

Hence “there are finitely many nodes labelled by f” is expressible in MSO by

$$\exists X . \text{Finite}(X) \land \forall x . \mathbf{p}_f(x) \rightarrow x \in X$$

But “MSO cannot count”: E.g. “X has twice as many elements as Y”.
Outline of Talk

1. Level-n Recursion Schemes and their Value Trees
2. A Model-Checking Problem
3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees
4. The Safe Lambda Calculus
5. The Theorem and Proof Outline
Structures with decidable MSO theories: some milestones

1. Rabin 1969: Regular trees. “Mother of all decidability results”
 \[
 \text{PushdownTree}_n = \text{Trees generated by order-} n \text{ pushdown automata.}
 \]
 \[
 \text{SafeRecSch}_n = \text{Trees generated by order-} n \text{ safe recursion schemes.}
 \]
5. Cauca (MFCS 2002). \(T_n = \) Trees obtained from the regular \(\Sigma \)-labelled trees by \(n \)-fold inverse deterministic rational mappings, each followed by an unfolding.

Theorem (KNU-C). \(\forall n \geq 0, \text{PushdownTree}_n = \text{SafeRecSch}_n = T_n \)

Question. Do \(\Sigma \)-labelled trees generated by unsafe recursion schemes have decidable MSO theories? If so, at which orders?
Hierarchies of Finitely-Presentable Infinite Structures

Safety seems a robust definition: several characterisations

<table>
<thead>
<tr>
<th>Equivalent Higher-Order Generating Devices</th>
<th>Classes of Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Languages</td>
<td>Trees</td>
</tr>
<tr>
<td>Pushdown Automata</td>
<td>Maslov 74, 76</td>
</tr>
<tr>
<td>Safe Recursion Schemes</td>
<td>Damm 82</td>
</tr>
<tr>
<td>Indexed Grammars</td>
<td>Maslov 76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word Languages</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order 0</td>
<td>Regular languages</td>
</tr>
<tr>
<td>Order 1</td>
<td>Context-free languages; e.g. $a^n b^n$</td>
</tr>
<tr>
<td>Order 2</td>
<td>Indexed languages; e.g. $a^n b^n c^n$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Regular trees (Rabin, etc.)
Algebraic trees (Bourcelle, etc.)
Hyperalgebraic trees (KNU 01)
Open Problems about the Maslov (= Damm) Hierarchy

Not much is known about level-3 and above.

1. **Pumping Lemma** (or Myhill-Nerode-type results)
 There are “pumping lemmas” for levels 0, 1 and 2 ([Hay73,Gil96]).
 Pace [Blumensath04] for whole Maslov Hierarchy – runs are pumpable, conditions given as lengths of runs and configuration size.

2. **Logical Characterization.**
 Regular languages are exactly those that are MSO definable (Büchi ’60).
 There is a characterization of context-free languages using quantification over matchings [LST94].

3. **Complexity-Theoretic Characterization.**
 Engelfriet ’83, ’91: characterizations of languages accepted by alternating / two-way / multi-head / space-auxiliary order-\(n\) PDA in terms of time-complexity classes (but no result for Maslov Hierarchy itself).

4. **Relationship with Chomsky Hierarchy.** E.g. is level 3 context-sensitive?
What is the safety constraint?

Definition [KNU02]. An order-2 equation is *unsafe* if the RHS has a sub-term P such that

(i) P is order 1

(ii) P occurs in an operand position (i.e. as 2nd argument of the application operator)

(iii) P contains an order-0 parameter.

Examples of unsafe equations: $f : o^2 \rightarrow o \ G, \ H : o$.

g x = H (f x)
F \varphi x y = f (F (F \varphi y) y (\varphi x)) a

Safety (as presented above) seems syntactically awkward and semantically unnatural but (we shall see shortly) it has important algorithmic value.
Outline of Talk

1. Level-\(n\) Recursion Schemes and their Value Trees
2. A Model-Checking Problem
3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees
4. The Safe Lambda Calculus
5. The Theorem and Proof Outline
In what sense is a safe \(\lambda\)-term safe?

A basic idea in lambda calculus / logic:

When performing \(\beta\)-reduction, one must use capture-avoiding substitution, which is standardly implemented by renaming bound variables afresh upon each substitution.

There is a price to pay for naming:

Any machine that correctly computes:

\[
\begin{cases}
\text{INPUT:} & \text{A simply-typed \(\lambda\)-term } M \\
\text{OUTPUT:} & \text{A } \beta\text{-reduction sequence from } M
\end{cases}
\]

needs an unbounded supply of names, and hence unbounded memory.

Safety lets us get away with no renaming of bound variables!
Safety *reformulated* as a simply-typed theory

We reexpress (and generalize) the safety constraint as a simply-typed theory. Sequents have the form

\[\underbrace{x_1 : A_1, \ldots, x_i : A_i}_{\text{order } l_1} \quad \cdots \quad \underbrace{x_l : A_l, \ldots, x_n : A_n}_{\text{order } l_m} \vdash M : B \]

- Each \(A_i \) and \(B \) are homogeneous\(^a\).
- Typing context partitioned according to orders with \(l_1 \geq \cdots \geq l_m \).

Formation rules must respect the partition:

- When forming abstraction, all variables of the lowest type-partition must be abstracted in an atomic step.
- When forming application, the operator-term must be applied to all operand-terms (one for each type) of the highest type-partition, in one atomic step.

\(^a\) \(o \) is homogeneous; and \((A_1 \to \cdots \to A_n \to o)\) is homogeneous just if \(\text{order}(A_1) \geq \text{order}(A_2) \geq \cdots \geq \text{order}(A_n) \), and each \(A_i \) is homogeneous.
Safe λ-Calculus: System S Typing Rules

$$\frac{\text{(A}_1|\cdots|\text{A}_n|o) \text{ homogeneous}}{\text{x}_1: \text{A}_1|\cdots|\text{x}_n: \text{A}_n \vdash b : B}$$

$$\frac{\text{(A}_1|\cdots|\text{A}_n|o) \text{ homogeneous}}{\text{x}_1: \text{A}_1|\cdots|\text{x}_n: \text{A}_n \vdash x_{ij} : \text{A}_{ij}}$$

$$\frac{\text{x}_1: \text{A}_1|\cdots|\text{x}_{n+1}: \text{A}_{n+1} \vdash M : B \quad \text{(A}_{n+1}|B) \text{ homogeneous}}{\text{x}_1: \text{A}_1|\cdots|\text{x}_n: \text{A}_n \vdash \lambda\text{x}_{n+1}.M : (\text{A}_{n+1}|B)}$$

$$\frac{\Gamma \vdash M : (\text{B}_1|\cdots|\text{B}_m|o) \quad \Gamma \vdash N_1 : \text{B}_{11} \cdots \Gamma \vdash N_{l_1} : \text{B}_{1l_1}}{\Gamma \vdash MN_1\cdots N_{l_1} : (\text{B}_2|\cdots|\text{B}_m|o)}$$

When forming abstraction, all variables of the lowest-order type-partition must be abstracted. When forming application, the operator-term must be applied to all operand-terms (one for each type) of the highest-order type-partition.
Safe λ-calculus makes algorithmic sense

Example. Suppose $f : o^2 \rightarrow o$. Contracting the β-redex without renmaing

$$(\lambda \varphi^{(o,o)}.(\lambda x.\varphi x))(f x)$$

leads to variable capture. The term is *not* safe.

Theorem. “Safe λ-calculus = (a) α-conversion-free λ-calculus”

In the safe lambda calculus, there is no need to rename bound variables when performing substitution $M[N_1/\varphi_1, \cdots, N_n/\varphi_n]$ provided the substitution is performed simultaneously on all free variables of the same order in M.

Proof idea. Suppose φ free in M, and x free in N, and x captured in (capture permitting) $M[N/\varphi]$. Then M looks like $\cdots (\lambda x.\cdots \varphi \cdots) \cdots$.

Case analysis by comparing $order(x)$ with $order(\varphi)$.

Lemma. A free variable in a safe term has order as least that of the term. □

Thus when reducing a safe λ-term, we do not need any supply of fresh name.
What is the right way to think of the Safe Lambda Calculus?

Safe λ-calculus seems of independent interest, and we don’t understand it.

Design issues: Is the homogeneity assumption really necessary?

Proof theory: What kind of reasoning principles does it support (via Curry-Howard)? Is it useful to automated deduction / theorem proving?

What is a **model** of safe λ-calculus? Does it have interesting models?

Game semantics: What kind of **pointer economy** does safety determine? Ans: Pointers are redundant in safe view-functions!

E.g. Kierstead terms: \(\lambda f. f(\lambda x. f(\lambda y. y)) \) is safe, but \(\lambda f. f(\lambda x. f(\lambda y. x)) \) is unsafe.

Implicit complexity. Simply-typed λ-calculus characterize polytime-computable numeric functions (Leivant-Marion 93). What about the safe terms?

Nevertheless, we shall prove that safety is not necessary for MSO decidability.
Two questions about safety

Is safety a genuine or spurious constraint for:

1. **Expressiveness.** Are there *inherently* unsafe \(\Sigma \)-labelled trees?

I.e. Is there an unsafe recursion scheme whose value tree is not the value tree of any safe recursion scheme? If so, at what order?

Conjecture. Yes, at order 2. But note:

Theorem. (A+deM+O FOSSACS 2005) There is no inherently unsafe word language at order 2.

2. **Decidability.** Is safety necessary for decidability? No, not at order 2.

Theorem. (A+deM+O 05 / KNUW 05) \(\Sigma \)-labelled trees denoted by order-2 recursion schemes, *whether safe or not*, have decidable MSO theories.

Question. What about higher orders?

Yes: Decidability result extends to all orders - main result of Part 2.