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Outline

e Set the stage: Evolution, Fitness, Phenotype, Genotype
e Define the model in genotype space

e Phase transition in the steady state

e Dynamics of the model in the ordered phase



Macroevolution

Studies of DNA and proteins of various species has shown that over a

period of billions of years,
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During this process, extinction and speciation has occurred.
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(but apparently the word has not reached Kansas)
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Microevolution

e Consider a species well “adapted” to an environment. If the external

conditions are altered, it will evolve.

e A measure of adaptation is the fithess or reproductive success. A well

adapted population has high fitness.

e But the selection acts on the phenotypic traits such as cell size, ability to

infect etc. For e.qg., a virus with high infectivity has a better chance of leaving

progeny.



A population well-adapted to a given
environment resides at the optimum

of the fitness landscape.

Due to a change in the environment, it

finds itself in a fitness valley.
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Measuring Fithess

In experiments, the replication rate of a species is a measure of the fitness.
For e.g., size of the viral plaques on bacterial lawn (Burch and Chao, 1999).
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The fitness of a starved bacterial colony increases with time (Lenski and
Travisano, 1994).
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The information is coded in the genome ...
e Genes are passed from one generation to the next.
e Phenotype is a function of the genotype.

However, phenotype-genotype mapping is not known except for few cases.
For e.g., with a RNA sequence (Genotype), a planar structure (Phenotype)

that minimises energy (Fitness) can be found (Fontana et al., 1993).

A microscopic theory of evolution works with RNA/DNA sequence
oc={01,...,0n}, 0; =A, UT,C,G.

Genome length /N of various organisms (Drake et al., 1998) :

RNA virus E. Coli C. Elegans Mouse Human

103-10* 46 x10° 8.0 x107 2.7 x10° 3.2 x10?




Seguence Space

The 2% binary sequences can be arranged on the Hamming space with
Hamming distance d(co, 0 ) = 32N (1 — 0, o)
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Fithess Landscape in Sequence Space

In principle:
Phenotype —»  Fitnhess
Genotype

In practice:

e With sequence o, assign an i.i.d. variable W, chosen from p(W/).
e The resulting landscape is rugged which is consistent with experiments.

e Due to reproduction: Population(o,t+1)=W, Population(c,t)



But Reproduction is Error Prone ...

ATACCGTTC Deletion
. . . <\X/>
Point substitution || | TGACATGG GGATCAC
ATGCCGATC
Insertion
Mutation rates for various organisms (Drake et al., 1998) :
RNA virus E. Coli C. Elegans Mouse Human

1073-107% 54 x10719 23 %1071 18 %1071 50 x10"1

We will consider point mutations occurring with probability

Py = HU7 (1 — p) V=07
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Eigen’s Model

Selection localises population, while mutation delocalises it.

One may anticipate a phase transition !!

That this indeed is the case is captured by a class of deterministic models :

ZO'/ p0'<—O'/WO'/XO'/(t)
Xa(t+1): Z’W’X’(t)

where X, (1) is the average fraction of type ¢ at time ¢ (Eigen, 1971).
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The Model Applies ...

e \When the population reproduces asexually as is the case for microbes.

e When the population M scales with the volume of the sequence space :
XJ(O) _ 50’0(0>,X0(1) -~ ,LLd(G’J(O))

The fraction X, (1) is detectable if " > 1/M (infinite population limit).
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Phase Transition

Consider single peak landscape: W (o) = Wyds0 + (1 — ds0)
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For u — 0, N — oo, uN fixed,

Woe ™V — 1
X(): 0
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(Tarazona, 1992)
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Schematically ...

p=0
“Survival of the fittest”

All the population at

the master sequence

0 < g < fie
Quasispecies
Closely related
mutants centred about

the master sequence
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Quasispecies: some remarks
e Non-Darwinian concept.

e The extremely heterogeneous makeup of the quasispecies has been seen
in experiments. In Q3 phage, only 14% of the population was found to be

wild-type (Domingo et al., 1978).

e Viral diseases like common cold and AIDS are hard to tackle due to this

reason, and new antiviral strategies have been proposed.

e Unlike in the condensate phase in driven-diffusive systems, the density is
not spread all over the Hamming space (for e.g., upto 4 mutants in Q3

phage of genome size ~ 10°).
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So Far:

e Defined a mutation-selection model.

e Steady state has a localising-delocalising phase transition.
Now:

e \What are the dynamics of the evolutionary process?
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Numerical lteration

e Start with a randomly chosen a0

e Since the population is infinite, all mutants
are presentatt = 1l

e Mutants better than the parent grow faster;
parent population drops.

® Process repeats until the fittest is found.

e Mutants with large Hamming distance ap-
pear later and vice versa. Some mutant
classes do not appear at all.

Which is the most populated sequence at ¢?
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Linear Equation

ZO'/ p0'<—O'IWO'/XO'/(t)
Xolt+1) = S OW X ()

Define the unnormalised variable Z through

 Zs(t)
Xoll) =

which obeys

Zo(t+1) = py oy Wy Zyr (8)

o

Thus, a linear equation is obtained which can be diagonalised with the initial
condition Z,(0) = ¢

0,0(0)-
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Random Slope Model (krug and Karl, 2003)

We first note that
_ (0)
Za(l) — o~ |npld(o,0") W

e all mutants get available immediately
e concentration depends only on the distance from o)
e higher the distance, smaller is the population

For mutants with sufficiently high fithess, now turn off the mutations :

Z,(t) = Zy(1) eV We tor ¢ > 1
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Random Slope Model (Contd.)

Taking logarithms on both sides :
E,(t) = —d(o,0'9) +t F,

We have (]C\i[) lines with random slopes at intercept —d. For purposes of o*,

only the best amongst these matter.
Ek(t) =—k+tF, , k=0,....N

where [}, is non-identically distributed variable chosen from
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Evolutionary Race

The population can be classified as : Spectator, Contender, Winner

E(k.t)
A O N R O R N W A
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e Spectator has a slope lower than that of the current winner £*.

e Contender is a record since it has a slope higher than that of all the lines

above It.

Rainfall ¢

Time
e \Winner Is a record that minimises the overtaking time also.
Thus, the prescription for o™ is :
Find the fittest at constant Hamming distance from the initial sequence.
Winner is the one that overcomes the initial disadvantage in minimum time.
(It works.)
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Traffic on a Single Lane Highway

(Ben-Naim et al., 1994)

e Each car has an initial speed .

e It moves ballistically with vy until it overtakes the preceding car.

e The overtaking car assumes the speed of the car leading the cluster.

e The overtaking line behaves like the leading car.
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Contenders vs. Winners (Jain and Krug, 2005)

Winners are a subset of contenders. How many of each type are there?

Prob(k!" slope | d) N =2k
ro slope is a record) ~
P N —k

1
This distribution is universal and van-
ishes at k = IN/2 since global maxi- _
mum is typically located at N /2. =

0

0 N/2

Average number of records ~ (1 — In2) N
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For p([") decaying as or faster than the exponential,
Prob(k*" slope is a winner) ~ N1/ f(k/N)

so that the average number of winners scales as v/ V.
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Thus, most of the 2%V sequences do not participate in the evolutionary race.
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Approach to the Fittest
e Intersection time T'(k, k') = (k — k') /(F}, — F}/)
e An estimate of the typical time " to find the fittest :
I’(last winner, last-but-one) ~ \/N/e since
—-most of the sequences are located within \/N distance of /V / 2
—-€ ~ (1) using extremal statistics for Gumbel class

e® Universal tails of the evolution time distribution :

vVN) VN

P(T) ~ P <?> ~ - brob(e = 0)

Fat tails imply that the expected time diverges.
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What Next?

Study of the dynamics of stochastic, finite population model.
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