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Outline

• Set the stage: Evolution, Fitness, Phenotype, Genotype

• Define the model in genotype space

• Phase transition in the steady state

• Dynamics of the model in the ordered phase
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Macroevolution

Studies of DNA and proteins of various species has shown that over a

period of billions of years,

Simple molecules
109yrs−→ Complex multicellular organisms

During this process, extinction and speciation has occurred.

(but apparently the word has not reached Kansas)
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Microevolution

• Consider a species well “adapted” to an environment. If the external

conditions are altered, it will evolve.

• A measure of adaptation is the fitness or reproductive success. A well

adapted population has high fitness.

• But the selection acts on the phenotypic traits such as cell size, ability to

infect etc. For e.g., a virus with high infectivity has a better chance of leaving

progeny.
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A population well-adapted to a given

environment resides at the optimum

of the fitness landscape.

Phenotype 

Fitness

Due to a change in the environment, it

finds itself in a fitness valley.

Phenotype 

Fitness
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Measuring Fitness

In experiments, the replication rate of a species is a measure of the fitness.

For e.g., size of the viral plaques on bacterial lawn (Burch and Chao, 1999).

t = 0 t = 50 t = 100
The fitness of a starved bacterial colony increases with time (Lenski and

Travisano, 1994).
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The information is coded in the genome ...

• Genes are passed from one generation to the next.

• Phenotype is a function of the genotype.

However, phenotype-genotype mapping is not known except for few cases.

For e.g., with a RNA sequence (Genotype), a planar structure (Phenotype)

that minimises energy (Fitness) can be found (Fontana et al., 1993).

A microscopic theory of evolution works with RNA/DNA sequence

σ ≡ {σ1, ..., σN}, σi = A, U/T, C, G.

Genome length N of various organisms (Drake et al., 1998) :

RNA virus E. Coli C. Elegans Mouse Human

103-104 4.6 ×106 8.0 ×107 2.7 ×109 3.2 ×109
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Sequence Space

The 2N binary sequences can be arranged on the Hamming space with

Hamming distance d(σ, σ
′
) =

∑N
i=1(1 − δσi,σ

′
i
).
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Fitness Landscape in Sequence Space

In principle:

Phenotype 

Genotype

Fitness

In practice:

• With sequence σ, assign an i.i.d. variable Wσ chosen from p(W ).

• The resulting landscape is rugged which is consistent with experiments.

• Due to reproduction: Population(σ,t+1)=Wσ Population(σ,t)
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But Reproduction is Error Prone ...

TGACATGG GGATCAC

Deletion

Insertion

ATGCCGATC

AAT TCCG TC

Point substitution

Mutation rates for various organisms (Drake et al., 1998) :

RNA virus E. Coli C. Elegans Mouse Human

10−3-10−4 5.4 ×10−10 2.3 ×10−10 1.8 ×10−10 5.0 ×10−11

We will consider point mutations occurring with probability

pσ↔σ
′ = µd(σ,σ

′
)(1 − µ)N−d(σ,σ

′
)
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Eigen’s Model

Selection localises population, while mutation delocalises it.

One may anticipate a phase transition !!

That this indeed is the case is captured by a class of deterministic models :

Xσ(t + 1) =

∑
σ
′ pσ←σ

′Wσ
′Xσ

′ (t)∑
σ
′ Wσ

′Xσ
′ (t)

where Xσ(t) is the average fraction of type σ at time t (Eigen, 1971).
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The Model Applies ...

• When the population reproduces asexually as is the case for microbes.

• When the population M scales with the volume of the sequence space :

Xσ(0) = δσ,σ(0), Xσ(1) ∼ µd(σ,σ(0))

The fraction Xσ(1) is detectable if µN ≥ 1/M (infinite population limit).
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Phase Transition

Consider single peak landscape: W (σ) = W0δσ,0 + (1 − δσ,0)

(Tarazona, 1992)

For µ → 0, N → ∞, µN fixed,

X0 =
W0e

−µN − 1

W0 − 1

Phase transition at µc = ln W0/N
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Schematically ...

µ = 0

“Survival of the fittest”

All the population at

the master sequence
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0 < µ < µc

Quasispecies

Closely related

mutants centred about

the master sequence

µ ≥ µc

Delocalised population

Mutants all over the

sequence space
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Quasispecies: some remarks

• Non-Darwinian concept.

• The extremely heterogeneous makeup of the quasispecies has been seen

in experiments. In Qβ phage, only 14% of the population was found to be

wild-type (Domingo et al., 1978).

• Viral diseases like common cold and AIDS are hard to tackle due to this

reason, and new antiviral strategies have been proposed.

• Unlike in the condensate phase in driven-diffusive systems, the density is

not spread all over the Hamming space (for e.g., upto 4 mutants in Qβ

phage of genome size ∼ 103).
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So Far:

• Defined a mutation-selection model.

• Steady state has a localising-delocalising phase transition.

Now:

• What are the dynamics of the evolutionary process?
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Numerical Iteration

• Start with a randomly chosen σ(0).

• Since the population is infinite, all mutants

are present at t = 1 !!

• Mutants better than the parent grow faster;

parent population drops.

• Process repeats until the fittest is found.

• Mutants with large Hamming distance ap-

pear later and vice versa. Some mutant

classes do not appear at all.

Which is the most populated sequence at t?

 0

 0.5

 1

 1  10  100

t

0.31 (0) 2.21 (1) 4.29 (3)

1.83 (1) 4.16 (3)

N = 6, µ = 10−6,

p(W ) = e−W
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Linear Equation

Xσ(t + 1) =

∑
σ
′ pσ←σ

′Wσ
′Xσ

′ (t)∑
σ
′ Wσ

′Xσ
′ (t)

Define the unnormalised variable Z through

Xσ(t) =
Zσ(t)∑
σ
′ Z ′

σ(t)

which obeys

Zσ(t + 1) =
∑
σ
′

pσ←σ
′Wσ

′Zσ
′ (t)

Thus, a linear equation is obtained which can be diagonalised with the initial

condition Zσ(0) = δσ,σ(0) .
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Random Slope Model (Krug and Karl, 2003)

We first note that

Zσ(1) = e−| ln µ|d(σ,σ(0)) Wσ(0)

• all mutants get available immediately

• concentration depends only on the distance from σ(0)

• higher the distance, smaller is the population

For mutants with sufficiently high fitness, now turn off the mutations :

Zσ(t) = Zσ(1) e(t−1) ln Wσ for t > 1
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Random Slope Model (Contd.)

Taking logarithms on both sides :

Eσ(t) = −d(σ, σ(0)) + t Fσ

We have
(

N
d

)
lines with random slopes at intercept −d. For purposes of σ∗,

only the best amongst these matter.

Ek(t) = −k + t Fk , k = 0, ..., N

where Fk is non-identically distributed variable chosen from

Pk(F ) =

(
N

k

)
p(F ) q(F )(

N
k)−1
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Evolutionary Race

The population can be classified as : Spectator, Contender, Winner
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• Spectator has a slope lower than that of the current winner k∗.

• Contender is a record since it has a slope higher than that of all the lines

above it.
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Time

Rainfall 

• Winner is a record that minimises the overtaking time also.

Thus, the prescription for σ∗ is :

Find the fittest at constant Hamming distance from the initial sequence.

Winner is the one that overcomes the initial disadvantage in minimum time.

(It works.)
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Traffic on a Single Lane Highway

(Ben-Naim et al., 1994)

• Each car has an initial speed v0.

• It moves ballistically with v0 until it overtakes the preceding car.

• The overtaking car assumes the speed of the car leading the cluster.

• The overtaking line behaves like the leading car.
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Contenders vs. Winners (Jain and Krug, 2005)

Winners are a subset of contenders. How many of each type are there?

Prob(kth slope is a record) ≈ N − 2k

N − k

This distribution is universal and van-

ishes at k = N/2 since global maxi-

mum is typically located at N/2.

 0

 1

 0  N/2  N

P
ro

b(
k,

N
)

k

Average number of records ≈ (1 − ln 2)N
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For p(F ) decaying as or faster than the exponential,

Prob(kth slope is a winner) ≈ N−1/2f(k/N)

so that the average number of winners scales as
√

N .

0.1

1

10

0.001 0.01 0.1 1

N
1/

2  P
(k

,N
)

k/N

+ N=512
× N=1024
--- (k/N)-1/2 

ο N=512
∆ N=1024

ο,∆ :Normal
+,× :Exp

1e-06

0.0001

0.01

1

0 0.5 1 1.5

+ N=512
× N=1024

Thus, most of the 2N sequences do not participate in the evolutionary race.
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Approach to the Fittest

• Intersection time T (k, k′) = (k − k′)/(Fk − Fk
′ )

• An estimate of the typical time T to find the fittest :

T (last winner, last-but-one) ∼ √
N/ε since

—-most of the sequences are located within
√

N distance of N/2

—-ε ∼ O(1) using extremal statistics for Gumbel class

• Universal tails of the evolution time distribution :

P (T ) ∼ P

(√
N

ε

)
∼

√
N

T 2
prob(ε = 0)

Fat tails imply that the expected time diverges.
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What Next?

Study of the dynamics of stochastic, finite population model.
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