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1 Introduction

Non–equilibrium phenomena are ubiquitous in nature and characterize many aspects of the
physical world, like atmospheric circulation, thermo–chemical reactions, glass formation, heat
and electronic conduction, deposition and growth, relaxation processes etc. These phenomena
occur in the presence of external forces driving the physical system out of its equilibrium
conditions. Stationary states can be achieved when the effect of the driving force is balanced by
dissipation mechanisms: despite fluctuations, the system evolves in time maintaining practically
unchanged its average properties.

These lecture notes aim at providing the reader a survey on the problem of heat transport with
a special focus on low-dimensional systems. In fact, they may exhibit peculiar properties, like
diverging heat conductivity in the thermodynamic limit. For pedagogical reasons we discuss a
collection of simple models which summarize some of the main aspects and questions. Math-
ematical rigour will be used as much as possible, but we shall be obliged to rely also upon
approximate methods or numerics.

Historically, the first goal of the old kinetic theory was the definition of transport coefficients
through phenomenological constitutive equations. The basic hypotheses of this macroscopic
theory of transport phenomena are the assumption that fluxes are proportional to thermody-
namic forces and that the system evolves close to equilibrium [1]. For instance, when dealing
with energy transport in a solid one defines the thermal conductivity κ through the Fourier
law

J = −κ∇T . (1)

where the heat flux J is the amount of heat transported through the unit surface in unit time
and T (x, t) is the local temperature. Such a phenomenological relation was first proposed in
1808 by J.B.J. Fourier as an attempt to explain the phenomenon of the Earth cooling - a
problem that had raised a long and controversial debate inside the scientific community, faced
with the need of explaining the thermal gradient present inside the Earth. Eq.(1) is assumed
to be valid close to equilibrium. Actually , the very definition of the local energy flux J(x, t)
and temperature field T (x, t) relies, in turn, on the local equilibrium hypothesis i.e., on the
possibility of defining a local temperature for a macroscopically small but microscopically large
volume at each location x for each time t.

The ultimate goal of a complete theory of transport phenomena in matter would be to ob-
tain equations like (1) from the microscopic approach of statistical-mechanics, a task which
has revealed of formidable difficulty. A typical puzzling example concerns the theory of heat
transport by lattice vibrations in insulating crystals. These lecture notes aim at surveying the
many efforts made for constructing such a microscopic theory, up to some of the most recent
achievements, that have opened promising perspectives for a consistent theoretical approach.

The first and most elementary attempt to give a microscopic foundation to Fourier law dates
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back to Debye. By rephrasing the results of the kinetic theory for the (diluted) phonon gas,
he obtained that the thermal conductivity should be proportional to Cv` where C is the heat
capacity and v, ` are the phonon mean velocity and free path, respectively. In 1929, R. Peierls
further extended this idea and formulated a Boltzmann equation [2] that shows how anhar-
monicity is necessary to obtain genuine diffusion of the energy through the so-called Umklapp
processes. Since then, the Boltzmann-Peierls approach became one of the cornerstones in the
theory of lattice thermal conductivity. In particular, it allows to compute the temperature de-
pendence of κ on temperature. On the other hand, in order to be predictive this approach has
to assume the relaxation time approximation, which reintroduces a somehow phenomenological
ingredient, unjustified on the basis of a purely microscopic theory.

From a more fundamental point of view, there are even more basic questions that go beyond
the actual calculation of the transport coefficients. For instance, under which conditions is local
equilibrium obtained? How can we guarantee that a unique nonequilibrium stationary state
is attained in a physically accessible time ? In this respect, simple mathematical models are
an invaluable theoretical playground where one can hope to give a more firm foundation and
to understand more deeply the hypotheses underlying eq. (1). It should be stressed that this
program is still nowadays far from being accomplished, at least from a mathematically rigorous
point of view [3]. On the other hand, the combination of analytical calculations and numerical
simulations has proved also recently to be quite successful for investigating many of those items.

As usual in theoretical physics, the guiding criterion of mathematical simplicity leads naturally
to consider 1 or 2d lattices (i.e., chains or planes) of point atoms interacting with their neigh-
bors trough nonlinear forces. The hope is to reproduce realistic thermodynamic properties of
their three-dimensional counterparts. This brings to the fore the following question: what are
the minimal requirements for such model to satisfy or not eq. (1)? Although it may appear sur-
prising, this issue has been addressed in the literature already in the late 60s without receiving
a definite answer. As known in the context of fluids [4], much of the difficulties arise from the
fact that transport coefficients in low spatial dimensions may not exist at all, thus implying a
breakdown of standard hydrodynamics. In the context of insulating solids, this usually shows
up as (i) a slow decay of equilibrium correlations of the heat current; (ii) a divergence of the
finite-size conductivity κ(N, T ) in the thermodynamic limit N → ∞ (where N is the number
of atoms in the sample). One of our concerns in these lectures will be to clarify, through the
analysis of some examples, under which conditions this may occur. We shall also comment
about the possible universality of such a divergency.

Up to now we have been mainly emphasizing the theoretical issues that motivate the study
of transport in low-dimensional lattice models. Of course, a further relevant motivation is the
existence of a variety of real systems that could be, at least in principle, effectively described
by 1 or 2d models. For instance, reduced dimensionality has been indeed invoked to explain
experiments on heat transport in anisotropic crystals [5,6] or magnetic systems [7]. Remark-
ably, a dependence of thermal conductivity on the chain length of solid polymers has also been
experimentally observed [8]. More generally, modern experimental techniques [9] allow to di-
rectly probe the transport properties of semiconductor films [10,11] and single-walled nanotubes
[12,13] that markedly display one-dimensional features at low temperatures. Some theoretical
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investigations of thermal conductance for a quantum wire in ballistic [14] and anharmonic [15]
regimes have been also recently undertaken.

2 Heat conduction in harmonic chains

Harmonic chains is the class of systems where heat transport can be studied explicitly by ana-
lytic calculations. In fact, the crucial feature of harmonic chains is integrability, that yields the
possibility of decomposing the heat flux into the sum of independent contributions associated
with the various eigenmodes. Even if such models are quite far from real solids, they are useful
for clarifying several aspects of heat conductivity. In particular, we are going to show that their
study is very helpful also for clarifying the role of boundary conditions.

We first discuss the simplest case of a homogeneous chain: we shall obtain an analytic expression
of the invariant measure for arbitrary coupling strength.

The effect of disorder is studied in the subsequent section, where the relevant quantities are
described by perturbative calculations. For completeness, we shall also recall the localization
properties of the eigenfunctions and self-averaging properties of several observables, such as the
temperature profile and the heat flux. The approach that we are going to follow is mainly based
on the Fokker-Planck equation and on simple stochastic calculus. An important alternative
approach based on transmission coefficients can be found in [16].

The homogeneous harmonic chain - Let us consider a homogeneous harmonic chain with
fixed boundary conditions in contact with stochastic Langevin heat baths. The equations of
motion read

q̈n = ω2(qn+1 − 2qn + qn−1) + δn1(ξ+ − λq̇1) + δnN(ξ− − λq̇N ), (2)

where ξ± are independent Wiener processes with zero mean and variance 2λ±kBTα, with T+ >
T−. In order to lighten the notation we have assumed unitary masses. This set of stochastic
equations can be solved [17] by passing to a phase-space description, i.e., by writing down the
Liouville equation that corresponds to the following Fokker-Planck equation

∂P

∂t
= Aij

∂

∂xi
(xjP ) +

Dij

2

∂2P

∂xi∂xj
(3)

Here and in the following we adopt the convention of implicit summation over repeated indices;
xi = qi for 1 ≤ i ≤ N , xi = q̇i for N < i ≤ 2N . Aij and Dij are elements of the 2N × 2N
matrices A and D that we write in terms of N × N blocks

A =







0 −I

ω2G λR





 , D =







0 0

0 2λkBT (R + ηS)





 (4)
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where we have introduced the average temperature T = (T+ + T−)/2 and the rescaled temper-
ature difference η = (T+ − T−)/T . Moreover, 0 and I are the null and identity matrices, G is a
tridiagonal matrix defined as

Gij = 2δij − δi+1,j − δi,j+1 ,

while R and S are defined as

Rij = δij(δi1 + δiN),

Sij = δij(δi1 − δiN ) (5)

The general solution of this equation is

P (x) =
Det{C−1/2}

(2π)N
exp

[

−1

2
C−1

ij xixj

]

(6)

where C is the symmetric covariance matrix

Cij ≡ 〈xixj〉 ≡
∫

dxP (x)xixj (7)

By replacing the definition of C into eq. (3), one finds that

Ċ = D − AC− CA† (8)

where A† is the transpose of A. Accordingly, the asymptotic stationary solutions can be deter-
mined from the equation [18]

D = AC + CA† (9)

In order to solve the problem, let us write C in terms of N × N blocks,

C =
(

U Z

Z
†

V

)

(10)

where the matrices U, V, and Z express the correlations among positions and velocities,

U ij = 〈qiqj〉 , V ij = 〈q̇iq̇j〉 , Zij = 〈qiq̇j〉 , (11)

If the temperatures of the two heat baths coincide (i.e., η = 0), it can be easily seen that

Ue =
kBT

ω2
G−1 , Ve = kBT I , Ze = 0 (12)
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Fig. 1. The temperature profile for the harmonic chain, formula (13), for coupling parameter ν = 0.2,
1.0 , 5.0 (solid, dotted and dashed lines respectively).

represents a meaningful solution, since it coincides with the equilibrium Boltzmann distribution
P (x) ≈ exp−H/kBT .

The derivation of the stationary solution in the out-of-equilibrium case is reported in Appendix
1 . All relevant correlations can be expressed in terms of the function φ(j) (see eq. (111))
that decays exponentially with the rate α defined in eq. (110). Direct inspection of correlations
indicates that α measures the length over which the boundary reservoirs significantly affect the
chain dynamics. As expected, α diverges in the weak coupling limit (ν = ω2/λ2 → ∞).

From eqs. (106,108), it follows that position-position and velocity-velocity correlations are equal
for all pairs of particles (i, j) such that i + j is constant. The qualitative explanation of this
property relies on the exponential decay of the boundary effects. In fact, the amplitude of, e.g.,
〈qiqj〉 decreasing exponentially with both i and j has to depend on i+j. Less obvious is the left-
right antisymmetry (Vij = VN−i+1,N−j+1) which implies that the boundary effects are exactly
the same for the two thermostats, whatever is their temperature. This is nicely reproduced by
the temperature profile

Ti = T (1 + ηVii) =



















T+ − νηTφ(1) i = 1
T [1 − ηνφ(2i − 1)] 1 < i ≤ N/2
T [1 + ηνφ(2(N − i) − 1)] N/2 < i < N
T− + νηTφ(1) i = N

(13)

which exhibits a further unexpected property (see Fig. 1): the temperature is higher in the
vicinity of the coldest reservoir (the only exception being represented by the first and last par-
ticles)!. Because of the exponential decay of φ(i), in the bulk, the temperature profile is constant
as if the system were at equilibrium with temperature T . However, this is only superficially
true, as position-velocity correlations significantly differ from the equilibrium ones.

Also the stationary local heat flux can be computed explicitly:

Ji = ω2Zi−1,i =
ω2kBTη

λ
φ(1) . (14)
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Eq. (103) implies that the value of Zi,j depends on i − j rather than on i + j, as before.
Physically, this symmetry implies that in the stationary state Ji must be independent on the
lattice position i. In the large N limit, eqs. (110,111) yield

J =
ω2kBT

2λ



1 +
ω2

2λ2
− ω

λ

√

ω2

4λ2
+ 1



 (T+ − T−). (15)

Accordingly, the heat flux is proportional to the temperature difference rather than to the
gradient as it should be if the Fourier law would be satisfied. This proves that homogeneous

harmonic chains do not exhibit normal transport properties.

For what concerns the dependence of the flux on λ, we see that J vanishes both in the limit of
large and small couplings. The asymptotic expressions are

J =

{

ω2

2λ
kB(T+ − T−) λ � ω

λ
2
kB(T+ − T−) λ � ω

, (16)

The maximum flux is attained for λ/ω =
√

3/2, a value that is close to the one observed
numerically in the nonlinear cases.

We conclude this section by recalling that a similar procedure can be adopted for solving the
problem of heat baths characterized by stochastic elastic collisions. In Ref. [17], it is shown that
very similar expressions are obtained also in this case, with only minor quantitative differences in
the numerical factors. Furthermore, it is worth mentioning the model of self-consistent reservoirs
introduced in [19], which can be solved exactly.

3 Heat conduction in disordered harmonic chains

Now we aim at considering the role of disorder on transport properties by studying the random-
mass (or isotopically disordered) chain

mnq̈n = qn+1 − 2qn + qn−1 . (17)

Boundary conditions play a crucial role, but for the moment we leave them unspecified (see
below). Let us also mention the general results by Lebowitz and collaborators [20,21]: they have
shown rigorously that the system approaches a unique stationary nonequilibrium state for a
large class of heat baths.

As it is known since Anderson’s pioneering contributions, the presence of disorder generally
induces localization of the normal modes of the chain. As a consequence, one should expect
that it behaves as a perfect thermal insulator. Nonetheless, the actual situation turns out to
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Fig. 2. The first, 41st and 100th eigenvector (from top to bottom) in a chain of 130 particles with ran-
dom masses with an even distribution of 1 and 1/2 values. The increasing localization with increasing
eigenvalue is evident.

be much more complicated, depending on boundary conditions and on the properties of the
thermostats.

Localization of the eigenmodes - Let us first recall some useful basic facts about localization.
For illustration, we consider the example of a disordered chain with two evenly-distributed types
of particles. Some of the numerically computed eigenvectors are shown in Fig. 2. Upon ordering
them with increasing eigenfrequencies, a distinct difference in their localization properties can
be recognized. Indeed, for small frequencies (upper panel of Fig. 2), randomness induces only
a relatively weak modulation of the amplitude; a partial localization can be recognized in the
intermediate panel, while a clear evidence of localization is visible only for the high-frequency
eigenvector, reported in the bottom panel.

The application of the transfer matrix formalism to the eigenvalue equation allows for a rigorous
investigation of the problem at hand. After inserting the expression qn = vneiωt in eq. (17), we
obtain

−mnω2vn = vn−1 − 2vn + vn+1. (18)

It is well known that the spectral properties of linear operators involving the discrete Laplacian
can be determined from a recursive equation for the new variable Rn = vn/vn−1. The most
known example where this approach has been successfully employed is that of Anderson’s
quantum localization in the tight-binding approximation. In the present context, eq. (18) yields

Rn+1 = 2 − mnω2 − 1

Rn
, (19)

an equation that can be interpreted as a “discrete time” stochastic equation. The mass mn

plays the role of a noise source (with bias), whose strength is gauged by the frequency ω. In
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particular, the inverse localization length γ is given by

γ = 〈ln |Rn|〉, (20)

while the integrated density of states I(ω) follows from node counting arguments, i.e., I(ω) = f ,
where f is the fraction of negative Rn values. In Fig. 3 it is shown that I increases linearly for
small ω and exhibits some irregular fluctuations at larger frequencies. The upper band edge
(at ω ' 2.8) is easily identifiable as the point above which I(ω) remains constant and equal to
one. At variance with the standard Anderson’s problem, where all eigenmodes are exponentially
localized, here γ → 0 for ω → 0. This can be easily understood from equation (19): Since ω2

multiplies the stochastic term, disorder becomes less and less relevant in the small frequency
limit. In this limit, one can thus resort to a perturbative approach. Let us start noticing that
for ω = 0, R = 1 is a marginally stable fixed point of the recursive equation (19). For small ω,
an intermittent process sets in: after a slow drift driving Rn below one, a reinjection to values
larger than one occurs and nonlinearity become suddenly relevant. The process repeats again
and again. By writing Rn = 1 + rn and expanding in powers of rn, we find that the dynamics
in the vicinity of Rn = 1 is described by

rn+1 = rn − r2
n − ω2〈m〉 + ω2δm (21)

where we have included only the first nonlinear correction and written separately the average
value of the noise term. In the limit of small ω, this equation can be approximated by the
Langevin equation

ṙ = −r2 − ω2〈m〉 + ω2δm (22)

where, for the sake of simplicity, the same notations have been kept. The corresponding Fokker-
Planck equation writes

∂P

∂t
=

∂(r2 + ω2〈m〉)P
∂r

+ ω4 σ2
m

2

∂2P

∂r2
(23)

where σ2
m = 〈m2〉 − 〈m〉2 stands for the variance of the mass distribution. Given the steady

incoming and outcoming flow, the stationary solution can obtained by imposing

(r2 + ω2〈m〉)P + ω4 σ2
m

2

dP

dr
= C (24)

where C represents the probability flux to be determined by imposing the normalization of the
probability density P . Notice also that C can be identified with the integrated density of states
I(ω), since it corresponds to the probability that, at each iterate, Rn is reinjected to the right,
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Fig. 3. Integrated density of states, I(ω) (solid line), and inverse localization length, γ (dashed line),
as a function of the frequency ω for a chain with mass disorder: the particles have either mass 1 or
1/2 with equal probability. The dotted line corresponds to the analytic expression (25). In the inset
the inverse localization length is plotted in doubly logarithmic scales (circles) and compared with the
theoretical formula (28) - solid line.

i.e., the probability of having a node in the eigenvector. In the absence of disorder (σm = 0),

I(ω) = C =

√

〈m〉
π

ω (25)

and, correspondingly,

P0(r) =
1

π

ω
√

〈m〉
r2 + ω2〈m〉 (26)

This approximation is already sufficient to reproduce the behavior of I(ω) at small frequencies,
as in the limit of ω → 0 the variance of the disorder goes to zero faster than the average
value. This is confirmed by comparing the dotted line in Fig. 3 (corresponding to the analytic
expression (25)) with the numerically determined integrated density.

On the other hand, the above approximation is not accurate enough to determine the local-
ization length, as disorder is totally disregarded. Indeed, the symmetry of P0 implies that
γ ≈ 〈r〉 = 0. We have to go one step further by writing P (r) as P0 plus a small perturbation.
A simple calculation shows that

P (r) = P0(r) +
ω5σ2

mr
√

〈m〉
π(r2 + ω2〈m〉)3

(27)

From expression (20) for the inverse localization length γ, we find that

γ = 〈r〉 =
ω2σ2

m

8〈m〉 , for ω −→ 0 (28)
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Fig. 4. Integrated density of states, I(ω) (solid line), and inverse localization length, γ (dashed line)
for a random-mass chain as in Fig. 3 with the addition of a unit frequency on-site potential.

an equation derived in Ref. [22] (see Fig. 3).

If we add a harmonic on-site potential to eqs. (17), the corresponding scenario becomes analo-
gous to that of the 1d Anderson’s problem with all eigenfunctions being exponentially localized.
This is illustrated in Fig. 4 where we have added harmonic springs with unit constant (i.e., a
force term −qn acting on the n-th particle) to the chain with random masses considered above.
The lower band-edge is now strictly bounded away from zero and the inverse localization length
does not vanish.

The temperature profile - In order to study the nonequilibrium properties, we need to
include the coupling with the thermal reservoirs. Here below, we consider Langevin-type heat
baths, as they allow an analytic treatment though limited to the weak-coupling regime. The
starting equation writes

mnq̈n = qn+1 − 2qn + qn−1 + δn1(ξ+ − λq̇1) + δnN(ξ− − λq̇N) (29)

where, for simplicity, we have assumed λ+ = λ− = λ. Although the equations are still linear,
there is no general method to derive an analytic solution for generic values of the coupling
constant λ. Accordingly, we restrict ourselves to consider the perturbative regime λ � 1. It is
convenient to introduce the new variable

un =
√

mnqn , (30)

which allows rewriting eq. (29) as

ün =
un+1√

mnmn+1

− 2
un

mn

+
un−1√

mnmn−1

+

δn1

m1
(
√

m1ξ+ − λu̇1) +
δnN

mN
(
√

mNξ− − λu̇N) , (31)

The advantage of this representation is that the operator describing the bulk evolution is
symmetric and, accordingly, can be diagonalized by an orthogonal transformation. In other
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words, upon denoting with ek
n the nth component of the kth eigenvector, it turns out that

∑

n ek
neh

n = δkh and
∑

k ek
nek

j = δnj.

With reference to the new variables Uk =
∑

n une
k
n, the equations of motion write as

Ük = −ω2
kUk − λ

∑

j

CkjU̇j +
ek
1√
m1

ξ+ +
ek

N√
mN

ξ− (32)

where −ω2
k is the real, negative kth eigenvalue of the unperturbed evolution operator and

Ckj =
ek
1e

j
1

m1
+

ek
Nej

N

mN
. (33)

eqs. (32) show that the normal modes are coupled among themselves through the interaction
with the reservoirs. Standard stochastic calculus applied to the modal energy Ek = (U̇2

k +
ω2

kU
2
k )/2 shows that the stationarity condition for the time average 〈Ėk〉 = 0 implies

Ckk〈U̇2
k 〉 +

∑

j 6=k

Ckj〈U̇kU̇j〉 = T+
(ek

1)
2

m1
+ T−

(ek
N)2

mN
. (34)

Now, we want to show that this sum is negligible in the small-coupling limit. In fact, from the
equality

d〈U̇kUh〉
dt

= 0, (35)

we find that

〈U̇kU̇h〉 − ω2
k〈UkUh〉 − λ

∑

j

Cjh〈U̇jUh〉 = 0 (36)

By solving this equation together with the symmetric expression obtained by exchanging k and
h, one obtains that 〈U̇kU̇h〉 is proportional to λ for k 6= h. Accordingly, up to first order in λ,

〈U̇2
k 〉 =

1

Ckk

(

T+
(ek

1)
2

m1
+ T−

(ek
N )2

mN

)

, (37)

As a consequence, by neglecting first order corrections, the local temperature Tn reads

Tn =

〈(

∑

k

U̇ke
k
n

)2〉

≈
N
∑

k=1

(ek
n)2

Ckk

(

T+
(ek

1)
2

m1

+ T−
(ek

N)2

mN

)

(38)
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Fig. 5. (a) The disorder-averaged temperature profile as predicted from the formula (38) for differ-
ent chain lengths (dotted, dashed, dot-dashed and solid curves refer to N = 64, 128, 256, and 512
respectively). (b) The variance of the temperature in the same notations as in panel (a).

This is basically the expression derived by Matsuda and Ishii [22]. As a consistency check, one
can easily verify that if T+ = T− = T , the local temperature Tn is equal to T for all values of n
(this follows from the normalization condition on the eigenvectors). Furthermore, the profile is
flat also when T+ > T− and the amplitude of all eigenvectors is the same at the two chain-ends:
in this case, Tn = (T+ + T−)/2. An obvious limiting case is the homogeneous chain. Generally
speaking, even though the dynamics of a generic disordered chain is statistically invariant under
left-right symmetry, the same does not hold true for each individual eigenvector.

Visscher [23] challenged equation (38) by arguing that quasi-resonances could be generic enough
to affect typical realizations of the disorder. In fact, a crucial assumption in the derivation of
the expression for the temperature profile is that cross-correlations in eq. (38) are negligible.
This is basically correct, unless pairs of frequencies are sufficiently close to each other, in which
case the resonance phenomena should be properly taken into account. Visscher indeed discussed
particular examples of mass distributions, where a more refined theory is needed. However, as
long as we are interested in generic realizations, the problem is whether quasi-degeneracies in
the spectrum are sufficiently frequent to significantly affect the overall validity of formula (38).
In all the cases we have considered this issue turned out to be practically irrelevant.

Formula (38) does not allow to obtain an analytic form of the profile since it requires the
knowledge of the eigenvectors and, on the other hand, the localization length alone does not
suffice to predict their amplitude at the boundaries. Therefore, numerical diagonalization of
the Hamiltonian for each different realization of the disorder is required. In Fig. 5a we have
plotted the disorder-averaged profile as a function of the rescaled lattice position x = n/N .
Upon increasing the chain length, the profile seems to slowly attain a linear shape, but sizeable
deviations are still present for chains as long as N = 512. Such slow convergence is confirmed in
Fig. 5b, where we plotted the sample-to-sample variance σ2

T of the temperature field. Although
its asymptotic behavior is even less clear, it is at least evident that fluctuations do not vanish
in the thermodynamic limit. This is tantamount to saying that the temperature profile is not
a self-averaging quantity.

Such difficulties dramatically emerge when performing direct simulations of a disordered chain.
This issue is of great practical importance also in view of more complex models, where analytical
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results are not available. The major problem is represented by the extremely slow convergence
towards the asymptotic regime that can be explained as follows. Eq. (32) shows that the effective
coupling of each eigenmode with the reservoirs is proportional to its square amplitude at the
extrema. Therefore, all eigenmodes that are localized away from the boundaries can thermalize
only in astronomically long times. To be more specific, the coupling strength of an eigenmode
characterized by an inverse localization length γ is of order exp(−γN), since it is localized a
distance equal, on the average, to the half of the chain length. This implies that the asymptotic
profile is attained over times that grow exponentially with N . In other words, the stationary
state is never reached in the thermodynamic limit.

Heat flux - In the case of stochastic heat baths (like those considered in the previous sec-
tion) and under stationary conditions the average heat flux can be obtained directly from the
temperature profile. In fact, the average amount of energy exchanged between the first particle
(n = 1) and the heat reservoir at temperature T+ is given by the expression the relation

J(λ, N) =
λ

m1

(T+ − T1) (39)

An equivalent expression holds at the opposite boundary, where the N -th particle is in contact
with the heat reservoir at temperature T−. By use of eq. (38) we obtain [22,23]

J(λ, N) = λ(T+ − T−)
∑

k

(ek
1)

2(ek
N )2

mN(ek
1)

2 + m1(ek
N )2

≡
∑

k

Jk (40)

where the k-th addendum Jk is naturally interpreted as the contribution of the k-th mode. The
latter is larger for modes that have larger amplitudes at the boundaries and couple thus more
strongly with the reservoirs. This interpretation can be justified from eqs. (32). Indeed, in so
far as cross-coupling can be neglected, the dynamics of the kth eigenmode is approximately
described by the equation

Ük = −ω2
kUk − λCkkU̇k +

ek
1√
m1

ξ+ +
ek

N√
mN

ξ−. (41)

Standard stochastic calculus shows that, in the stationary regime, the energy exchanged per
unit time with the two thermal baths is equal to Jk, where Jk coincides with the expression
implicitly defined by eq. (40).

However, heat transport is characterized by more subtle mechanisms than one could infer from
this simple picture of independent modes. This is immediately understood if we look at the
general expression for the local heat flux, that, in the case of harmonic chains, reduces to

〈jn〉 = −〈qnq̇n+1〉. (42)
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By expanding qn and q̇n+1 in eigenmodes, this equation can be rewritten as

〈jn〉 = −
N
∑

k,h=1

ek
n+1e

h
n√

mnmn+1
〈UkU̇h〉, (43)

an expression that, in spite of the explicit presence of the subscript n, is independent of n.
The interesting point that is made transparent by this formula is that a nonvanishing flux is
necessarily associated with the existence of correlations among different modes. This is all
the way more meaningful, once we realize that diagonal terms with k = h vanish, being 〈UkU̇k〉
the average of the derivative of a bounded function. This observation seems to be in contrast
with the derivation of Matsuda-Ishii formula itself, that is basically obtained by treating all
modes as evolving independently of each other. Anyway, we should notice that the heat-flux
is proportional to λ and this is compatible with the existence of weak modal correlations.
In fact, “velocity-velocity” or “position-velocity” correlations may arise from the fact that all
eigenmodes are subject to the same noise source (except for a multiplicative factor) and this
may well induce a sort of synchronization among them.

Here below, we proceed with our perturbative analysis by deriving an analytic expression. Let
us start by noticing that the equality d〈UkUh〉/dt = 0 implies that

〈U̇kUh〉 = −〈U̇hUk〉 . (44)

This antisymmetry property together with the further equality d〈U̇kU̇h〉/dt = 0 imply that

λCkh

(

〈U̇2
k 〉 + 〈U̇2

h〉
)

−
(

ω2
k − ω2

h

)

〈U̇kUh〉 = 2λ

(

T+
ek
1e

h
1

m1
+ T−

ek
Neh

N

mN

)

(45)

After replacing the expression of 〈U̇2
k 〉 (see eq. (37)) in the above equation, the latter can be

solved for 〈U̇kUh〉.

Instead of discussing the general case, we prefer to illustrate the presence of these correlations in
the simple case of a homogeneous harmonic chain. In this context, one can, in principle, obtain
a general expression for the correlations by transforming eq. (103) (derived for an arbitrary
λ value) in k space. However, the calculations, though straightforward, are rather tedious.
Therefore, we limit ourselves to considering the weak-coupling limit. The symmetry of the
eigenmodes imply that if δ = h − k is an even number correlations vanish, while for an odd δ
we have

〈U̇kUk+δ〉 = 2
λ(T+ − T−)

m

ek
1e

k+δ
1

ω2
k+δ − ω2

k

(46)

In Fig. 6a we report the numerical results for a chain of length N = 128 with fixed boundary
conditions and interacting with two thermal baths at temperatures T+ = 75 and T− = 25.
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Fig. 6. Modal correlations for a harmonic chain of length N = 128 with fixed boundary conditions.
Averaging has been performed on a time t = 108 units. Solid, dashed and dotted curves correspond
to δ = 1, 3, and 5, respectively, while the thin lines correspond to the analytic expressions (46). (a)
refers to a weak-coupling case: the times between consecutive collisions are uniformly distributed in
the interval [19, 21]. (b) corresponds to a strong coupling: collision times distributed in [0.9, 1.1]. The
inset contains the same curves, after rescaling to the maximum values.

Apart from the residual statistical fluctuations, a reasonable agreement with expression (46)
is found upon letting λ = 0.056 (approximately equal to the inverse of the average separation
between consecutive collisions). Fig. 6b shows the results for the same length but a stronger
coupling strength. The different shape of the curves is a clear indication that higher order terms
must be taken into account, since the perturbative approach implies that the coupling constant
acts just as a multiplicative factor. It is anyhow interesting that shape itself is invariant under
change of δ as it can be seen in the inset where the three curves are rescaled to their maximum
value.

Thermal conductivity - If obtaining an accurate analytic estimate of the flux is as difficult
as determining the temperature profile, we can at least make use of eq. (40) to determine its
scaling properties. In fact, since high-frequency eigenmodes are strongly localized, it is clear
that only the first part of the spectrum contributes significantly to the flux. Let Ne be the
number of modes whose localization length is larger than the sample size N . From eqs. (25,28),
it follows that γ ' σ2

mI(ω)2/〈m〉. Upon writing I = Ne/N and imposing γ = 1/N , we find that

Ne =
〈m〉
σm

√
N. (47)

At this point, it becomes crucial to specify the boundary conditions. Let us first consider the
case of free ones: the square amplitude of an extended eigenmode in a lattice of size N is on the
order 1/N . This implies that the contribution to the flux of one of such modes is λ(T+−T−)/N
and the total flux can be estimated as

Jfree(λ, N) ∝ λ(T+ − T−)
〈m〉
σm

1√
N

. (48)
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As a result the conductivity diverges as

κfree ∝ λ
〈m〉
σm

√
N. (49)

This scaling was first derived in Ref. [22] and later confirmed in Ref. [24] by means of a different
approach. On the other hand, for fixed boundary conditions the result is completely different.
In this case all eigenmodes must vanish for n = 0 and n = N + 1. By approximating the
site-to-site variation of ek

n with the wavenumber k/N , we find that the square amplitude of ek
1

and ek
N is on the order of k2/N3. As a consequence, summing all such addenda up to k = Ne

yields

Jfix(λ, N) ∝ λ(T+ − T−)

(

〈m〉
σm

)3
1

N3/2
. (50)

and, accordingly, the thermal conductivity vanishes as

κfix ∝ λ

(

〈m〉
σm

)3
1√
N

. (51)

The above estimates give only the leading orders in N . In view of the previously encountered
strong finite-size effects, it is crucial to check directly the convergence to the asymptotic results.
To this aim it is convenient to compute the effective exponent

αef(N) =
d lnκ

d lnN
(52)

The results are shown in Fig. 7 for the case of fixed boundaries. For weak coupling, the conduc-
tivity has been evaluated by numerically computing the eigenvectors and averaging of Matsuda-
Ishii formula (40) over 1000 realizations of the disorder. The asymptotic regime α = −1/2 is
approached very slowly (see the circles): one should consider N values much greater than 103.
Similar results are found at stronger coupling by directly simulating chains that interact with
stochastic baths. The data (diamonds in Fig. 7) suggest that a relatively strong coupling re-
duces the amplitude of finite-size corrections. Finally, it is important to realize that the small
coupling of the exponentially localized modes with the thermal baths does not cause any prob-
lem to the temporal convergence of J(λ, N), since independently of whether such modes have
reached their stationary state, their contribution to the total flux is anyhow negligible.

In summary, not only boundary conditions affect the scaling behavior of κ, but they give rise
to qualitatively different scenarios: for free boundaries, disordered harmonic chains exhibit an
anomalous conductivity as it diverges in the thermodynamic limit. On the contrary, a disor-
dered chain with fixed boundaries behaves as a good insulator ! This latter scenario is brought
to an extremum if we add an on-site potential. In fact, we have already mentioned that all
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Fig. 7. The effective divergence exponent defined in (52) versus the chain length. The logarithmic
derivative has been evaluated with finite differences, subsequent points correspond to chain of double
length. Circles are obtained from the Matsuda-Ishii formula, while diamonds correspond to a direct
simulation of a chain interacting with stochastic baths operating at T+ = 10 and T− = 5, respectively.
The collision times were uniformly distributed in the range [1,2].

eigenfunctions become exponentially localized and this implies that conductivity is exponen-
tially small in N . This is again very much reminiscent of the electrical conductivity of the
Anderson’s problem.

Let us conclude this section with a further comment on the role played by heat baths. Dhar [25]
has shown how the scaling behavior of the conductivity with size depends also on the spectral
properties of the heat baths. More precisely, if κ ∝ Nα then the exponent α is determined by the
low-frequency behavior of the noise spectrum. This implies that a suitable choice of the latter
can even lead to a finite conductivity ! Such a scenario is less unphysical than it may appear
at a first glance. Integrability of the motion implies that the only scattering mechanism that
determine the heat resistance is the interaction with the baths. It is therefore reasonable that
the actual way in which the latter transfer energy among the modes plays a crucial role.

4 The Boltzmann–Peierls approach to anharmonic disordered systems

In this section we briefly review the ”traditional” approaches to the theory of thermal con-
ductivity in anharmonic and disordered systems. Despite their major importance in solid state
applications we will limit ourselves to a very sketchy discussion trying to point out some general
issues that are of main interest for our purposes. In this respect, our presentation is inspired
by the review article of Jackson [26].

The most elementary picture of heat conductivity is based on the analogy with the kinetic
theory of gases where κ = Cvsl/3, C is the heat capacity, vs the sound velocity and l is the
mean free path. For a lattice one has of course to take into account the different group velocities
vk = ∂ω

∂k
of normal modes. Upon introducing the relaxation times of each mode as τk = lk/vk

18



one obtains the formula

κ =
1

3

∫

dkCkv
2
k
τk . (53)

In the spirit of Debye’s model, dispersion is neglected and the above formula of kinetic theory
is indeed recovered. A less heuristic derivation of such result can also be given by solving the
Boltzmann equation in the relaxation time approximation [27]. The phenomenological relax-
ation times τk account for all the possible scattering mechanisms (anharmonicity, impurities,
scattering with the boundaries, electrons etc.) and must be computed in some independent
way. The combined inverse phonon relaxation time is obtained as the sum of the inverse re-
laxation times corresponding to each process. Obviously, this approach relies crucially on the
combined use of the concept of harmonic normal modes and on the adequacy of the relaxation
time description.

In 1929 R. Peierls proposed his celebrated theoretical approach based on the Boltzmann equa-
tion. The main idea is again taken from the kinetic theory: lattice vibrations responsible for
heat transport can be described as an interacting gas of phonons [2]. For simplicity, let us con-
sider a one-dimensional ordered crystal and introduce the time-dependent distribution functions
Nk(x, t) of the phonons with wavenumber k in a small volume around the location x. Taking
into account only the cubic term in the interaction potential (three-phonon processes), the
kinetic equations are of the form

∂Nk

∂t
+ vk

∂Nk

∂x
=
∫ ∫

dk′dk′′{[NkNk′Nk′′ − (Nk + 1)(Nk′ + 1)Nk′′] Wkk′k′′ (54)

+
1

2
[Nk(Nk′ + 1)(Nk′′ + 1) − (Nk + 1)Nk′Nk′′] Wkk′k′′} . (55)

where the transition probability Wkk′k′′ is basically obtained by the Fermi golden-rule. The r.h.s.
is the collision integral i.e., the difference between the number of processes (per unit time) that
increase or decrease the number of phonons in the state k. These nonlinear integro-differential
equations are clearly impossible to solve in general 1 .

Anyway, some useful informations about the heat conductivity can be obtained by analysing
the dynamics in Fourier space of a system of anharmonic oscillators, where third and fourth
order interaction terms are present( Fermi-Pasta-Ulam model):

Q̈k = −ω2
kQk −

∑

k1,k2

V
(3)
kk1k2

Qk1
Qk2

−
∑

k1,k2,k3

V
(4)
kk1k2k3

Qk1
Qk2

Qk3
. (56)

1 An approximate solution can be obtained in the limit of small applied gradients, i.e., by looking for
small perturbation of the equilibrium distribution Nk = N

eq
k + δNk. This allows for the linearization

of the collision integral [28,2]
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Let us now consider the harmonic part of the flux

JH = im
∑

k

vkωkQkQ̇
∗
k . (57)

where we are considering a chain of N oscillators with equal mass m and

ωk =
2√
m
|sin(

π k

N
)| (58)

vk = ω′
k is the phonon group velocity. Upon suitably rearranging the terms we can write the

equation for its time derivative as

J̇H =
im

3

∑

kk1k2

[−vkωk + vk1
ωk1

+ vk2
ωk2

]V
(3)
−kk1k2

QkQk1
Qk2

(59)

+
im

4

∑

kk1k2k3

[−vkωk + vk1
ωk1

+ vk2
ωk2

+ vk3
ωk3

] V
(4)
−kk1k2k3

QkQk1
Qk2

Qk3
(60)

where the summations are over all k-indices. As expected, this implies that JH is a constant
of motion in the harmonic case. In a perfect lattice one has the selection rules (remember that
the mode index k ranges between −N/2 + 1 and N/2):

V
(3)
kk1k2

6= 0 for − k + k1 + k2 = 0,±N (61)

V
(4)
kk1k2k3

6= 0 for − k + k1 + k2 + k3 = 0,±N (62)

Peierls observed that if there is no dispersion, i.e., ωk = vs|k|, then both the three and four
phonon contributions to (60) vanish if the sums in (62) are equal to zero. Therefore, the only
contribution are those of the so-called Umklapp processes for which the sum is ±N . The latter
are the relevant ones in producing thermal resistance (J̇H 6= 0).

Besides the above general considerations, there are some important consequences regarding the
role of dimensionality that can be drawn in the framework of the perturbative theories. Indeed,
by evaluating the r.h.s of (60) to lowest order (i.e., by replacing the Qk’s with the harmonic
solution Ake

iωkt) and performing an average over fast oscillations one is left with the leading
resonant terms, that satisfy the additional conditions

ωk + ωk1
+ ωk2

= 0 ωk + ωk1
+ ωk2

+ ωk3
= 0 (63)

Thus there is a big difference among the three and four phonon processes in one dimension
as in the former case the first of conditions (62) and (63) cannot be satisfied (see Ref.[29] for
some numerical results). The net results of this argument due to Peierls is to conclude that
there is only resistance to conduction in one dimension due to four phonon Umklapp processes.
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Of course, in higher dimension the situation is different because the two constraints can be
satisfied also for three phonon processes due to the existence of different (longitudinal and
transverse) branches of the frequency spectrum. Notice also that, in the spirit of a perturbative
calculation, only the harmonic component of the flux JH has been considered, but the results
are not basically altered when including also its nonlinear component [26].

Similar conclusion can be drawn from the analysis of the high-temperature limit of the Boltz-
mann equation following a standard argument originally due to Pomeranchuk (see for example
Chapter VII in ref. [28]). Let us consider the effect of processes involving three long-wavelength
phonons with wavenumbers k, k′, k′′. One can thus ascertain that in this limit the transition
probability Wkk′k′′ ∼ kk′k′′ ∼ k3 and that N eq

k ∼ 1/k, thus implying that the solution of the lin-
earized Boltzmann equation diverges as δNk ∼ k−(2+d) in dimension d. Using the corresponding
expression for the heat flux yields

JH ∝
∫

dkωkvkδNk ∝
∫

dk

k2
(64)

Therefore, the contribution of such processes would lead to a thermal conductivity diverging
like 1/k in any dimension. In order to avoid this divergence it is therefore necessary that long
wavelength phonons are scattered by short-wavelength ones. A simple reasoning [28] shows that
(in the absence of degeneration points in the spectrum) this is only possible if the group velocity
of short wavelength phonons is larger than the sound velocity i.e., |vk| > vs. Once again this
constraint cannot be satisfied in one-dimensional homogeneous chains and one would conclude
that a finite conductivity can be established only by means of higher order processes.

The Boltzmann-Peierls approach is certainly one of the milestones of the understanding of ther-
mal transport in solids. Nonetheless, it is important to recall that its derivation is essentially
based on second-order perturbation theory (through the collision kernel Wkk′k′′, which is eval-
uated by means of Fermi’s golden rule) and involves the use of random phase approximation
among the phonon modes, which is certainly less appealing than the Stosszahlansatz originally
introduced by Boltzmann for molecular collisions. It is however remarkable how classical pertur-
bative approaches already indicate that some peculiarities have to be expected for anharmonic
lattices in lower dimensions.

5 Linear response and transport coefficients

The other major approach which is commonly used when dealing with transport processes
is linear response theory. At variance with the response to mechanical perturbations (e.g.,
an external electric field) the heat conduction process is due to boundary forces. Therefore,
a conceptual difficulty arise as there is actually no small term in the system Hamiltonian
that can be used as an expansion parameter. This difficulty can be overcome at the price of
a stronger assumption, namely that local equilibrium holds. The hypothesis looks physically
reasonable, but it is far from being rigorously based even in simple mathematical models and
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it has been often devised as one of the weak points in the foundation of the whole theory. If
local equilibrium holds, a temperature field T (x) can be defined accordingly, thus allowing to
introduce a nonequilibrium density matrix

ρ = Z−1 exp
(

−
∫

dxβ(x)h(x)
)

(65)

where h(x) is the Hamiltonian density operator. If we assume β(x) = β(1 − ∆T (x)/T ) and
that the deviations from global equilibrium are small the density matrix can be rewritten as

ρ = Z−1 exp (−β(H + H ′))) (66)

which defines a perturbation Hamiltonian

H ′ = − 1

T

∫

dx∆T (x)h(x) (67)

It is therefore possible to proceed with the perturbative expansion and to obtain the well known
formula [30] ,that in the classical case reads

κGK =
1

kBT 2
lim
t→∞

t
∫

0

dτ lim
V →∞

V 〈j(τ)j(0)〉 (68)

where j is the volume-averaged heat flux defined in eq.(69). As often stated, the formula relates
the nonequilibrium transport coefficient to the fluctuations of a system in equilibrium. A crucial
issue, especially when dealing with simulations of a finite system, is that the infinite-volume
limit should be taken before the long-time limit, in order to avoid the problem of Poincare’
recurrences. Furthermore, this is a particularly delicate matter whenever a slow decay of cor-
relations is present.

There is a basic and subtle issue regarding the application of the formula, that caused some
confusion in the literature [31]. In the derivation à la Kubo sketched above 〈· · ·〉 denotes a
canonical average. As it is well known, a formally identical expression was obtained by Green
in the microcanonical ensemble, i.e., for an isolated system where energy is conserved. If also
the total momentum P is conserved, it has to be set equal to zero otherwise 〈j〉 6= 0 and the
integral in eq.(68) would diverge 2 . Now, as already pointed out by Green himself [32], the
microscopic expression of the heat flux, that has to be employed in the formula (68), depends
on the chosen ensemble. Indeed, he showed that, in general, the expression

j =
1

V

∑

i

ẋihi +
1

2V

∑

j 6=i

(xi − xj)Fij(ẋi + ẋj) (69)

2 As observed in [3], one may alternatively use in eq.(68) the truncated correlation functions
〈j(t)j(0)〉T = 〈j(t)j(0)〉 − 〈j〉2 evaluated for P 6= 0.
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is the correct one in the microcanonical case while a ”counterterm” must be added to it in the
canonical (or grand-canonical) one

jcan = jmic − ev − Av − mv2v (70)

being v the velocity of the center of mass and A the pressure tensor. Up to terms of order
1/
√

N

jcan ' jmic − hv (71)

where h here denotes the specific enthalpy. Obviously, the two ensembles are expected to give
the same result, provided that microcanonical energy density is chosen to correspond to the
canonical temperature T . The reason why the same value of the transport coefficient is obtained
using different expressions of the flux is that time-correlations of fluctuations can be different
in different ensembles.

6 Mode–coupling theory and anomalous transport in low-dimensions

Despite the conceptual difficulties of the assumptions made for its derivation, eq. (68) provides a
well defined prescription for obtaining thermal conductivity in terms of equilibrium quantities.

In particular, it implies that any knowledge about κGK can be traced back to a reliable estimate
of the current-current correlation function. Making reference to the previous section we assume
that our model of a solid – a regular lattice of coupled oscillators – is an isolated system
described by the microcanonical ensemble, so that the current is given by the heat-flux vector
in d space dimensions defined in (69) 3 .

An effective method for estimating the current-current correlation function can be obtained by
applying the well known mode-coupling theory (MCT), introduced some decades ago for ap-
proaching the problem of long-time tails in fluids [4]. Since a rigorous proof of such a statement
is lacking, we prefer to illustrate first some simple arguments that support this claim. After-
wards, we are going to draw the main quantitative consequences by applying MCT. Finally,
we discuss in more technical detail the reliability of the above mentioned hypotheses, making
reference to the 1D FPU model of coupled oscillators with cubic and quartic nonlinearities.

As we have mentioned in the previous section, the classical perturbative approach, that ex-
tends Peierls’ one to the high temperature regime, already indicates that anomalous transport

3 Thermal conductivity should be represented in general as a tensor. Here we assume to consider the
simple case of an isotropic homogeneous solid made of atoms displaced on a regular hypercubic lattice,
in the absence of any external force field. Accordingly, the thermal conductivity tensor has a diagonal
representation, where each component reduces to the same scalar quantity. Upon this assumptions,
κGK reduces to the scalar quantity defined in (68).
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coefficients in low dimensional lattices should be expected. In fact, at high temperatures the
non–linear components of the interaction play a major role and the behavior of hydrodynamic
modes is expected to depend crucially on the mechanism of energy exchange among modes.
At a first approximation, we can say that each mode k is characterized by a typical relaxation
time scale proportional to the inverse of the damping factor γk. In models of fluids, γk vanishes
continuously in the limit k → 0. In this sense, it still plays the role of a perturbative parameter,
implying that the damping effects are less and less relevant for hydrodynamic modes. Numeri-
cal studies performed for several models of anharmonic crystals with confining nearest-neighbor
interactions, like the FPU or the Lennard-Jones models, exhibit the same scenario [33–35] in
the high energy regime. Moreover, they also indicate that high-k modes behave like ”thermal”
variables, whose relaxation time scale is much faster 4 . Relying upon these observations, we
are led to guess that Fourier modes in the above mentioned class of models can be represented
at high energies as a fluid of quasi-particles, rather than a gas of weakly interacting phonons.

On the other hand, the effective value to be attributed to γk must be “renormalized” by taking
explicitly into account that, due to the nonlinear nature of the interaction, all modes contribute,
with different weights, to determine the hydrodynamic time scales. By exploiting the similarity
with models of real fluids, we can expect that MCT [4,36] provides us the right tool for estimat-
ing the effective relaxation time scales of hydrodynamic modes. In particular, MCT predicts
that the long-time behavior of any current-current correlation function in a fluid depends on
how the effective damping factor γk → 0 in the limit k → 0. Accordingly, if the effective damp-
ing factor γk vanishes too rapidly for k → 0 the time dependence of the heat-flux correlation
function may be such that integral (68) diverges. In general this effect must depend also on
the space dimension. Almost conserved modes propagating with sound velocity through the
lattice are expected to propagate more efficiently in lower than in higher dimensions, where
the presence of transverse modes favors the collision mechanism. Actually, a well defined, i.e.,
finite, transport coefficient in a model of anharmonic solid should emerge from an efficient dis-
sipation mechanism eliminating all contributions associated with the ballistic propagation of
sound waves. It is worth recalling that Fourier law is a consequence of the assumption that the
temperature field obeys a diffusive equation.

Before entering any explicit treatment of MCT we want to summarize the main consequences
of this approximate renormalization approach. According to MCT the leading contribution
to the time dependence of the correlation function introduced in (68) is determined by the
hydrodynamic propagator

Γ(k, t) ' exp−ω(k)t (72)

4 In the high–energy regime the mentioned models are known to exhibit strong chaotic properties,
yielding an effective ergodicity. The separation of time scales between low-k and high-k modes seems
to contradict this statement. This can be explained by observing that the low-k modes, playing a
major role in transport effects, are a negligible fraction of the spectrum in the thermodynamic limit.
Accordingly, for high energies equilibrium properties are dominated by thermal modes, while ”hydro-
dynamic” deviations from ergodicity might be recovered in any finite system as higher order corrections
to equilibrium averages.
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where k is the modulus of the wave-vector k, specifying the momentum coordinates in the
Fourier space, dual to the lattice space coordinates. Specifically, one has

〈j(t)j(0)〉 ∝ A(E)

π
∫

0

dkkd−1Γ(k, t) (73)

where A(E) is a proportionality constant depending on the total energy E. The crucial point is
that MCT predicts non-analytic dispersion relations for the complex quantity ω(k) [36], yielding
the following asymptotic expansions at small values of k:

ω(k) ' ick + νkα + . . . (d = 1) (74)

ω(k)' ick + νk2 ln k + . . . (d = 2) (75)

ω(k) ' ick + νk2 + . . . (d = 3) (76)

where c is the velocity of sound and the leading term of the relaxation rate γ(k) is represented by
the leading term of the low-k asymptotic expansion times a proper positive constant ν. Notice

that the results obtained for d = 2 and for d = 3 are model independent, while, as

we shall see in the following, the exponent α > 1, obtained for d = 1, depends on

the symmetry of the leading nonlinearity of the model. Dimensional analysis yields the
following dependence of the heat–flux correlation function at large time:

〈j(t)j(0)〉∼ t−1/α (d = 1) (77)

〈j(t)j(0)〉 ∼ t−1 (d = 2) (78)

〈j(t)j(0)〉 ∼ t−3/2 (d = 3) (79)

Making reference to the definition of thermal conductivity (68), one can obtain the estimate
of the dependence of κ on N from the asymptotic behavior of 〈j(t)j(0)〉, by considering that
sound waves propagate with finite velocity c 5 . By restricting the integral in eq. (68) up to
times smaller than the typical transit time N/c, the long time dependence can be translated
into the large N dependence of κ:

κ∼ N (α−1)/α (d = 1) (80)

κ ∼ ln N (d = 2) (81)

κ ∼ finite (d = 3) (82)

5 The case of rotators in d = 1 represents a remarkable exception to anomalous heat conduction.
Actually, despite conservation of energy and momentum still hold, the hydrodynamic equations do
not yield any divergence because in this model there are no propagating sound waves. This can be easily
guessed from the observation that the periodic potential of this model does not allow the existence of
an acoustic band, as it happens for a confining nearest-neighbor interaction potential with a unique
equilibrium position (minimum).
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It is worth mentioning that numerical estimates of the size dependence of the heat conductivity
κ in equilibrium and non-equilibrium simulations agree quite well with these quantitative pre-
dictions. Simulations confirm also the basic assumption of MCT, i.e. the separation of relaxation
time scales between hydrodynamic (low-k) and thermal (high-k) Fourier modes.

For the sake of space we shall not go through the explicit derivation for the cases d = 2 and
d = 3. The reader can find details in the references mentioned throughout this section. Anyway,
these cases are much simpler to be derived than the case d = 1, which will be discussed in the
following section.

7 MCT for chains with cubic and quartic nonlinearities

Here we illustrate how one can compute the relaxation times for the FPU model with cubic
and quartic nonlinearities. We have already introduced in formula (56) the equations of motion
of the 1d FPU model for the Fourier transformed coordinates

Qk = N−1/2
N
∑

l=1

ql exp[−i(2πk/N)l] (83)

where ql are the lattice space coordinates, labelled by the integer index l, and ωk = 2|sin(πk/N)|,
with the wave-number k ranging in the interval [−N/2, N/2], are the usual harmonic frequencies
of normal modes on a 1d lattice.

The pure cubic FPU-model (V (4) = 0) should be studied in the MCT approach under the
assumption that the nonlinear potential is a perturbation of the harmonic chain. In fact the
lower unboundedness of the potential yields run-away solutions in the equations of motion for
large nonlinearities. The addition of the quartic nonlinearity avoids this problem. On the other
hand the hydrodynamic treatment of the cubic model is essentially dependent on the leading
(cubic) nonlineariry and MCT calculations can be performed neglecting the contribution of the
subleading (quartic) nonlinearity. As we shall see a different situation is obtained when the
leading nonlinearity is quartic (V (3) = 0). The symmetry of the even potential changes the very
structure of the MCT and predicts a different value of the exponent α with respect to the cubic
case.

Linear response theory provides a general method for representing the dynamics of slow vari-
ables, associated with the total momentum conservation law, in terms of suitable stochastic
equations. Such slow variables are naturally represented by long-wavelength Fourier modes
(k << N), that are assumed to behave almost uncorrelated from each other. Making reference
to the standard formalism introduced by Kubo [30], one can introduce a projection operator P
in phase space, acting on each scalar observable O as follows:

PO =
∑

k

[

〈OQ∗
k〉

〈|Qk|2〉
Qk +

〈OP ∗
k 〉

〈|Pk|2〉
Pk

]

(84)
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where the average 〈· · ·〉 is assumed over the time scale of fast variables and Pk = Q̇k is the
momentum coordinate (for unit mass particles), canonically conjugated with Qk. The projected
equations of motion then read

Q̈k = −ω̃2
kQk −

t
∫

0

Γk(t − s)Pk(s)ds + Rk (85)

where the random force Rk = (1 − P)Q̈k is related to the memory kernel Γk(t − s) by the
fluctuation-dissipation theorem:

Γk(t) = β〈Rk(t)R
∗
k(0)〉 (86)

where β is the inverse reduced temperature of thermal modes at equilibrium. Nonlinear effects
are partially included into the renormalized frequency

ω̃2
k = (β〈|Qk|2〉)−1 = (1 + α)ω2

k , α(β) =
1

β

∫

exp−βV (x)dx
∫

x2 exp−βV (x)dx
− 1 (87)

that, in practice, amounts to a renormalization of the ”harmonic” velocity of sound c to a
temperature dependent value c̃ = c

√
1 + α. A straightforward consequence of eq. (85) is that

the normalized correlation function

Gk(t) = βω̃2
k〈Qk(t)Qk(0)〉 (88)

obeys the equation of motion

G̈k(t) + ω̃2
kGk(t) = −

t
∫

0

Γk(t − s)Ġk(s)ds . (89)

By passing to the Laplace transforms of Gk(z) and Γk(z) with the definition

Ak(z) =

∞
∫

0

e−iztAk(t)dt (90)

equation (89) yields the relation:

Gk(z) =
iz + Γk(z)

z2 − ω̃2
k − izΓk(z)

(91)

Up to here we have illustrated some formal manipulation of the equations of motion along the
strategy of linear response theory [30]. The crucial conceptual point is the explicit computation
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of the memory kernel Γk(t). MCT is an approximate self-consistent method for obtaining such
an expression in terms of Gk(t) . The first step of this procedure amounts to the replacement

〈Rk(t)R
∗
k(0)〉 → 〈Fk(t)F∗

k (0)〉 (92)

where 〈· · ·〉 represents the equilibrium average and Fk(t) is a shorthand notation for the non-

linear component of the forces, i.e., the last two addenda on the r.h.s. of eq. (56). Actually
Rk(t) cannot be explicitly determined, since it does not obey standard Liouvillean evolution.
The above replacement implies also that slow terms possibly contained in Fk(t) (and absent in
Rk(t)) can be neglected in the thermodynamic limit. On the basis of plausibility considerations
(see [4,37]) it can be argued that the leading contribution to the correlator on the r.h.s. of eq.
(92) is given by the resonating terms, obeying the conditions k1 = −k2 and k1 − k2 − k3 = 0
(see eq.(60) ) for the cubic and quartic components, respectively.

For the cubic term this approximation yields the relation

Γk(t) = β〈Fk(t)F∗
k (0)〉 ≈ C(β)ω2

k

1

N

∑

k′

Gk′(t)Gk−k′(t) (93)

where C(β) = 3
β(1+α)2

(g2
3), where g3 is the cubic coupling constant.

Performing the thermodynamic limit, N → ∞ and passing to the continuous variable repre-
sentation 2πk/N → q, the sum in eq. (93) can be replaced by an integral:

Γ(q, t) = εω(q)2

π
∫

−π

dpG(p, t)G(q − p, t) (94)

where epsilon =
3g2

3
KBT

2π
and ω(q) obeys the bare dispersion relation (with the sound velocity

c = 1):

ω(q) = 2 |sinq

2
| (95)

When the leading nonlinearity is the quartic one the last equation changes to

Γ(q, t) = εω(q)2

π
∫

−π

dp

π
∫

−π

dnG(p, t)G(n, t)G(q − p − n, t) (96)

In Appendix 2 we report the procedure for solving the cubic case. For the sake of space the
solution of the quartic case is omitted, although the reader can try to obtain it by repeating
(with a few more technical difficulties) the same kind of calculations.
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Here we just mention the main results: for the cubic case α = 3/2 and in the quartic case
α = 2. This implies that the heat conductivity κ in chain of nearest-neighbor coupled nonlinear
oscillators exhibits different power-law divergence in the thermodynamic limit when the leading
nonlinearity is cubic or quartic, namely

κ∼ N1/3 cubic case (97)

κ∼ N1/2 quartic case (98)

Let us point out that recent numerical simulations [38] agree quite well with these MCT predic-
tions. On the other hand one should consider that quartic case is quite a peculiar situation. In
fact, by adding pressure at the chain ends, after having introduced a lattice length scale (which
is completely absent in the FPU models) one can easily argue that the quartic problem can
be reformulated as an effective cubic case. In this perspective the power-law divergence of the
quartic FPU model seems quite an exception of the 1/3 divergence. In real materials, where
exact one-dimensional structure are quite difficult to be designed, one expects to recover power
law divergences typically smaller than but close to the value 1/3.
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APPENDIX 1: Solution of the Harmonic Homogeneous Chain

In this Appendix, we present a procedure very close to that adopted in Ref. [17] for solving the
Fokker-Planck equation (3) for a homogeneous harmonic chain. Starting from the equilibrium
solution (12), let us define

U≡Ue +
kB(T+ − T−)

2ω2
U

V≡Ve +
kB(T+ − T−)

2
V (99)

Z≡ kB(T+ − T−)

2λ
Z ,

From eq. (9), it follows that U, V and Z satisfy the equations,

Z=−Z† (100)

V =UG + ZR (101)
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2S − VR − RV= ν[GZ − ZG] (102)

where ν = ω2/λ2 is the only, dimensionless, parameter that matters. In addition, U and V are
required to be symmetric. From the peculiar structure of the matrices R and S, it follows that
the l.h.s. of eq. (102) is a bordered matrix (i.e., its only nonvanishing elements are located on
the external columns and rows). Accordingly, the r.h.s. must be bordered as well, i.e., in the
bulk, Z commutes with G. The most general structure of a matrix commuting with G in the
interior is the linear combination of a matrix M d

ij with equal elements along the diagonals (i+ j
constant) and a matrix M c

ij with equal elements along the cross-diagonals (i− j constant). The
antisymmetry requirement for Z (see eq. (100)), implies that no contribution of the second type
is present and, more precisely, that

Zij = φ(j − i) (103)

with the further constraint φ(j) = −φ(−j). The quantities φ(j) are fixed by equating the border
elements of the commutator [G, Z] (multiplied by ν) with those of the l.h.s. of eq. (102),

νφ(j) = δj1 − V1j = δj1 + VN,N−j+1 (104)

where φN ≡ 0 by definition. From eq. (101) and its transposed expression it follows that U

satisfies a similar relation to that for Z,

GU − UG = RZ + ZR. (105)

Accordingly, also U commutes with G in the bulk. The different symmetry property of U with
respect to Z implies, however, that U is constant along the cross-diagonals. It is easy to verify
that a solution of eq. (105) is given by

Uij =
{

φ(i + j − 1) if i + j ≤ N
φ(2N + 1 − i − j) if i + j ≥ N

. (106)

In principle, this is not the only solution of eq. (105), as one can add any symmetric matrix
commuting with G; however, one can check a posteriori that the addition of any such matrix
would eventually violate the symmetry properties of V.

As a result of eq. (106), also the matrix X can be expressed in terms of the auxiliary variables
φ(j). By replacing the Z and X solutions in the r.h.s. of eq. (101), we both obtain an equation
for the vector φ(j),

N−1
∑

j=1

Kijφ(j) = δ1i, (107)
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where K = G + νI, and the following expression for V,

V = S − νU. (108)

The problem of finding a solution for the heat transport in a homogeneous chain is accordingly
reduced to solving eq. (107) that can be written as the recursive relation

φ(j + 1) = (ν + 2)φ(j) − φ(j − 1) (109)

which has to be complemented by suitable initial and final conditions. From the above equation,
it follows that φ(j) is the linear combination of two exponentials exp(±αj) with

e−α = 1 +
ν

2
−
√

ν +
ν2

4
(110)

Upon imposing the appropriate initial conditions, we finally obtain

φ(j) =
sinh(N − j)α

sinh Nα
(111)

which completes the solution for the stationary probability distribution.

APPENDIX 2: Mode-coupling approach to low-dimensional transport

The mode-coupling equations for the cubic FPU model, in dimensionless units of mass, lattice
spacing and bare sound velicity( m = a = c = 1) read

G̈(q, t) +

t
∫

0

Γ(q, t − s)Ġ(q, s) ds + ω2(q)G(q, t) = 0 (112)

Γ(q, t) = ε ω2(q)

π
∫

−π

dp G(p, t)G(q − p, t) (113)

where

ε =
3g2

3KBT

2π
(114)

ω(q) = 2|sinq

2
| (115)
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Notice that in the thermodynamic limit (113) represent an infinite set of equations, depending
on the wavenuber q.

This set of equations is derived by assuming that the main contribution to the hydrodynamic
behavior comes from the coupling among sound modes (associated with the conservation of
density and momentum and characterized by a ballistic propagators). The coupling with heat
modes (associated with energy conservation and diffusive propagators) is assumed to be so weak
to be neglected (this is exactly the case for a hard point gas). Numerical tests performed for
the FPU models confirm the validity of this assumption.

We want to solve this set of self-consistent equations with the initial conditions G(q, 0) = 1 and
Ġ(q, 0) = 0.

The physical meaning of these equations can be understood as follows. Let us assume that a
Markovian approximation holds i.e. we replace the memory function by a Dirac distribution

π
∫

−π

dp G(p, t)G(q − p, t) ≈ δ(q − p) (116)

The first equation of (113) for small values of q reduces to the form

G̈(q, t) + ηq2Ġ(q, t) + c2q2G(q, t) = 0 (117)

According to linear elasticity theory [39], this equation is equivalent to the one representing the
evolution of a macroscopic displacement field u(x, t) of an elastic string at at finite temperature:

ü − ∂2
xu + η∂2

xu̇ = 0 . (118)

where η is a suitable viscosity coefficient which takes into account the internal irreversible
processes.

We would like to solve the set of self-consistent equations (113) with the initial conditions
G(q, 0) = 1 and Ġ(q, 0) = 0. More precisely, we aim at computing explicitely the scaling
properties of the correlation function G(q, t), consistently with Γ(q, t).

In order to apply a scaling argument like the one used in [40] for a Heisenberg spin chain at finite
temperature we have first to reduce the second order PDE’s to first order PDE’s. Such a task
can be accomplished by assuming that there are two different time scales ( multiscale analysis):
a slow one associated with the dissipation and a fast one associated with the oscillation of
G(q, t). Accordingly, we rewrite the first of (113) as follows:

G̈(q, t, ε) +

t
∫

0

Γ(q, t − s, ε)Ġ(q, s, ε) ds + ω2(q)G(q, t, ε) = 0 (119)
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We introduce the long time scale τ = µt , with µ =
√

ε and we consider t and τ = µt as
independent time variables. The time-derivative and the time-integration operators transform
as

d

dt
→ ∂

∂t
+ µ

∂

∂τ
(120)

e

∫

dt → 1

µ

∫

dt
∫

dτ (121)

eq.(119) can be rewritten as follows:

∂2

∂t2
G(q, t, τ) + 2µ

∂2

∂t∂τ
G(q, t, τ) + µ2 ∂2

∂τ 2
G(q, t, τ)

+
1

µ

t
∫

0

dt′
τ
∫

0

dτ ′Γ(q, t − t′, τ − τ ′)

(

∂

∂t
G(q, t′, τ ′) + µ

∂

∂τ
G(q, t′, τ ′)

)

+ ω2G(q, t, τ) = 0(122)

Consistently with the multiscale aproach we assume that also G(q, t) can be expressed by the
perturbative expansion:

G(q, t, τ) = G0(q, t, τ) + µ G1(q, t, τ) + O(µ2) (123)

This means that the decay time-scale associated with dissipation is ruled by the perturbative
parameter µ, in such a way that τ � t. The zero-order equation obtained from (122) reads:

∂2

∂t2
G0(q, t, τ) + ω(q)2G0(q, t, τ) = 0 (124)

which yields the straightforward solution:

G0(q, t, τ) = C(q, τ)eiω(q)t + c.c. (125)

The amplitude C(q, τ) can be determined by solving the equation obtained from (122) at the
first order expansion in µ:

−2µ
∂

∂τ

(

iω(q)C(q, τ)eiω(q)t + c.c.
)

− 1

µ

t
∫

0

dt′
τ
∫

0

dτ ′Γ(q, t − t′, τ − τ ′)
(

iω(q)C(q, τ ′)eiω(q)t′ + c.c.
)

= µ
∂2

∂t2
G1(q, t, τ) + µω(q)2G1(q, t, τ) (126)

33



where G0(q, t, τ) has been replaced by its explicit solution (125). Now we consider the memory
function, which has the general form:

Γ(q, t, τ) = µ2

+∞
∫

0

dΩ
[

M(q, τ, Ω)eiΩt + c.c.
]

(127)

By substituting (127) into (126) the integral is found to contain exponentials of the form
e±i(ω−Ω)t and e±i(ω+Ω)t. According to time-dpendent perturbation theory the latter can be
neglected, while the former yield the resonance condition Ω = ω. By imposing the Fredholm
conditions (i.e. orthogonality w.r.t. e±iω(q)t) on the r.h.s. of eq. (126) one obtains

2
∂

∂τ
C(q, τ) +

τ
∫

0

dτ ′M(q, τ, ω)C(q, τ ′) = 0 (128)

and an equivalent equation for the complex conjugate C∗(q, τ). It remains to obtain an explicit
expression for M(q, τ, Ω). This can be obtained by recalling that in the cubic FPU model the
memory function has the form

Γ(q, t) = µ2ω2(q)

π
∫

−π

dp G(p − q/2, t)G(p + q/2, t) (129)

By substituting the expression of G(p, t) in (125) one obtains

Γ(q, t, τ) =µ2q2

π
∫

−π

dpdC(p − q/2, τ)C(p + q/2, τ)eiω(p−q/2)teiω(p+q/2)t

+C(p − q/2, τ)C∗(p + q/2, τ)eiω(p−q/2)te−iω(p+q/2)t

+C∗(p − q/2, τ)C(p + q/2, τ)e−iω(p−q/2)teiω(p+q/2)t

+C∗(p − q/2, τ)C∗(p + q/2, τ)e−iω(p−q/2)te−iω(p+q/2)tc (130)

Since we want to take into account the hydrodynamic limit (q → 0) the previous expression
simplifies to

Γ(q, t, τ) =µ2q2

π
∫

−π

dpdC(p − q/2, τ)C(p + q/2, τ)ei2ω(p)t + C(p − q/2, τ)C∗(p + q/2, τ)e−iω′(p)qt

+C∗(p − q/2, τ)C(p + q/2, τ)eiω′(p)qt + C∗(p − q/2, τ)C∗(p + q/2, τ)e−2iω(p)tc (131)

where ω′(p) = dω
dp

|q=0. The first and the fourth addenda are negligible, and if we assume that
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the velocity of sound c is independent of q we obtain:

Γ(q, t, τ) = µ2q2





π
∫

−π

dpC∗(p − q/2, τ)C(p + q/2, τ)eicqt +

π
∫

−π

dpC(p − q/2, τ)C∗(p + q/2, τ)e−icqt



(132)

By comparing this expression with (127) one obtains

Γ(q, t, τ) = µ2M(q, τ)eic|q|t + c.c. (133)

Accordingly, M(q, τ) can be identified with q2
∫ π
−π dpC∗(p − q/2, τ)C(p + q/2, τ). At first order

in the perturbative approach we obtain the new set of self-consistent equations

2
∂

∂τ
C(q, τ) +

τ
∫

0

dτ ′M(q, τ, ω)C(q, τ ′) = 0

M(q, τ) = q2

π
∫

−π

dpC∗(p − q/2, τ)C(p + q/2, τ) (134)

Notice that this set of equations are first-order PDE which describe the slow decay of the
amplitude of correlation functions. Any dependence on the short time scale typical of fast
oscillations has disappeared and, in practice, we are going to solve a sort of envelope equations.
In particular, we aim at computing the scaling properties of both functions C(q, τ) and M(q, τ),
by assuming that the following scaling relation holds

C(q, τ) = C(qλa, τλb) , M(q, τ) = λM(qλa, τλb)

Simple calculations yield a = −1/3 and b = 1/2. Accordingly, the solutions have the form:

C(q, τ) = g(τq3/2) (135)

M(q, τ) = q3f(τq3/2) (136)

The asymptotics of these solutions in the τ and q variables can be obtained without finding
the explicit form of these solutions. We obtain

M(q, τ) = q2
∫

dpg2(τp3/2) = λ4/3 q2

τ 2/3
(τ → ∞, q → 0) (137)

and finally

Γ(q, t, τ) = µ2
[

M(q, τ)eicqt + M∗(q, τ)e−icqt
]

∼ µ2q2 eicqt + e−icqt

τ 2/3
(138)
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By reintroducing the original time variable t we find:

Γ(q, t, τ) = µ
4

3 q2 eicqt + e−icqt

t2/3
(139)

Notice that one can also obtain the explicit expression for the Laplace transform C(q, z) of
C(q, t) by substituting (137) into the first of (134):

C(q, z) =
i

iz + λ4/3q2z−1/3
=

iz1/3

iz4/3 + λ4/3q2
=

iz1/3

iz4/3 + (λq
3

2 )4/3
(140)

Here λ is a suitable constant.
It is worth pointing out that this is the Laplace transform of the Mittag-Leffler special function
Eα(−(τγ)α). In our case α = 4/3 e γ = λq3/2. The asymptotis of this function in the limits
τ → 0 and τ → ∞ is given by :

exp[−(λq3/2τ)4/3], λq3/2τ << 1(λq3/2τ)4/3, λq3/2τ >> 1 (141)

Notice that both asymptotics determine the same scaling relation for the heat-flux correlation
function.

Analogously, we can consider the Lapalace transform of (139), which has the form:

Γ(q, z) = µ
4

3 q2
[

(z − c | q |)−
1

3 + (z + c | q |)−
1

3

]

(142)

where

Γ(q, z) =

∞
∫

0

e−iztΓ(q, t)dt (143)

By Lapalace-transforming the first of (113) one has the formal solution (with Ġ(q, 0) = 0)

G(q, z) =
iz + Γ(q, z)

z2 − ω2(q) − izΓ(q, z)
(144)

Γ(q, z) = M(q)
∫

dz′
∫

dp G(p, z − z′)G(q − p, z′) (145)

where the integration on z′ is along the real axis (inverted Laplace transform) and we have
introduced M(q) = εω2(q). One can expect that the dissipative effects are weak for small
values of q, so that the first of eq.s (145) can be approximated as follows

G(q, z) = G−(q, z) + G+(q, z) =
−i/2

z − ω(q) − iΓ(q, z)/2
+

−i/2

z + ω(q) − iΓ(q, z)/2
(146)
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Notice that by this approximation we have disregarded in the numerator terms like Γ/ω. They
are expected to contribute as small phase factors, which can be neglected at least in the limit
q → 0. By substituting (142) into (146) we can compute the poles of the correlation function.
They are located at:

±c | q | +i
√

ε | q | 32 (147)

which indicates that the exponent α = 3/2 in the cubic FPU model, so that the thermal
conductivity diverges in the thermodynamic limit as

κ3 ∼ N1/3 (148)

.

For what concerns the quartic FPU model (g3 = 0 , g4 6= 0) even more tedious calculations
performed by the same multiscale analysis yield a much simpler expression for the Laplace
transform of the amplitude of the correlation function

C(q, z) =
i

iz + λq2
(149)

which yields a time decay of the heat-flux correlation function

〈J(t)J(0)〉 ≈
∫

dqg2(tq2) ∼ t−1/2 (150)

Accordingly, this implies that the heat conductivity diverges in the thermodynamic limit as

κ4 ∼ N1/2 (151)
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