4 )

Quasi stationary distributions and
Fleming Viot Processes

Pablo A. Ferrari

Nevena Marié

Universidade de Sao Paulo

http://www.ime.usp.br/ “pablo




-

Quasi stationary distributions (QsD)

Irreducible jump Markov process with rates Q@ = (¢(x,y)) on
AU {0}. P,(x,y) transition matrix.

A countable and 0 absorbing state.

Z; is ergodic with a unique invariant measure g

Law starting with p conditioned to non absorption until time t:

ZyEA M(y)Pt (ya CU)

— . €T & A
L= en (y)Pe(y,0)

A quasi stationary distribution (QSD) is a probability measure v on
A satisfying

Yt =V
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v is a Left eigenvector for the restriction of the matrix ) to A with

eigenvalue A, = — 3 - ¥(y)q(y,0): v must satisty the system

> v(y) qly,x) = (— > v(y)aly, 0))1/(1’), Vo € A.

yeA yeA
vQ = A\, v
> v laly, z) + q(y,0)v(z)] =0, Va € A.
yeA
recall q(x,x) = — Z q(x,y)
yeAU{0}\{z}

> vy z) + qly, Ov@)] =v(z) > (9(z,y) +q(z,0)v(y))

yeA\{z} yeA\{z}

(balance equations)
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Yaglom limit for u:
lim ¢j'(y), yeA
t— 00

if it exists and it is a probability on A.

A finite, Darroch and Seneta (1967): there exists a unique QSD v
for () and that the Yaglom limit converges to v independently of
the initial distribution.

A infinite: neither existence nor uniqueness of QSD are guaranteed.

Example: asymmetric random walk
p=q(i,24+1)=1—¢q(¢,¢ — 1), for ¢« > 0. In this case there are
infinitely many QSD when p < 1/2 and none when p > 1/2.

Minimal QsD (for p < 1/2):
x/2
v(x) ~ m( r )
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Existence

For A = N under the condition
lim P(R > t|Zy=x) =0
R absorption time, Ferrari, Kesten, Martinez and Picco [6]:

existence of QSD = Ee’F < oo

for some 6 > 0.
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Existence

Ergodicity coefficient of Q):

a=a(Q) = Z inf q(x,2)

ey xeA\{z}

Mazimal absorbing rate of Q:

C = C(Q) :=supq(z,0)

e\

Theorem 1. If o > C then there exists a unique QSD v for () and

the Yaglom limit converges to v for any initial measure L.

Jacka and Roberts [10]: under a > C' uniqueness and Yaglom limit.
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The Fleming-Viot process (FV)
e System of N > 0 particles evolving on A.
e Particles move independently with rates () between absorptions.

e When a particle is absorbed, it chooses one of the other particles

uniformly and jumps instantaneously to its position.

Generator (Master equation):

N
cO=3 Y [ac6. + a0 L] (5 - £(©)

=1 yeA\{£(0)}

where £9Y(j) = y for j = i and £“Y(j) = £(j) otherwise and

N
n(€,y) = Z 1{¢(i) = y}.
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Empirical profile and conditioned process
¢, process in Al :
n; =€ N unlabeled process,

n:(x) = number of £ particles in state x at time .

Theorem 2. Let pu probability on A. Assume
( é\f’“(z’), i=1,...,N) iid with law . Then, fort >0 and x € A,

B ()
1 — H
am — i (2)
N,u
. Ur (SE) ! . .y
1 o P
i w4 (), in Probability

Fleming and Viot [8], Burdzy, Holyst and March [1], Grigorescu
and Kang [9] and Lébus [12] in a Brownian motion setting.

o
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Ergodicity of rv
A finite, Fv Markov in finite state space

Hence ergodic (there exists unique stationary measure and the

process converges to the stationary measure).

For A infinite:
Theorem 3. If a > 0, then for each N the ¥V process with N

particles is ergodic.
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Stationary empirical profile and QSD
Assume ergodicity.

Let V¥ be distributed with the unique invariant measure.

Theorem 4. o > C. For each x € A, the following limits exist

N
ot (z) . 5
]\;E)Iclx) N = v(x), in Probability

and v is the unique QSD for ().

o
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Sketch of proofs

Existence part of Theorem 1 corollary of Theorem 4. Uniqueness:
Jacka and Robert.

Theorem 3: stationary version of the process “from the past” as in

perfect simulation.
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Theorems 2 and 4 based on asymptotic independence.
e (o, unique solution of
dtgpt ngt +Q(y70)¢g($)]7 T € A
yeA
e 7); satisfies

%E(ﬂ;@)) _ ZE(niV’;\;(y) (a(0.) + a0, 0" —(?))

yeA

e We prove:

Eln, " (y) n, " ()] — En, " (y) En, " (z) = O(N)

12
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e QSD satisfies

> vy la(y,x) + q(y, 0)v(z)] =0, = €A

yeEA

e nV invariant for FV satisfies:

%E(n]\;\(]y) (q(y,x) +q(y,0) ?\]foi)) =0, zeA
e Under a > C:

Eln™ (y) n™ (z)] — En™ (y) En™ (z) = O(N)

e Variance order 1/N, setting = = y.

e Finally we show (¢, ", N € N) and (pV, N € N) are tight.

o
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Comments

e Fleming-Viot permits to show existence of a QSD in the a > C

case (new).

e Compared with Brownian motion in a bounded region with
absorbing boundary (Burdzy, Holyst and March [1], Grigorescu and
Kang [9] and Lobus [12] and other related works):

e Existence of the FVv process immediate here.
e they prove the convergence without factorization.

e We prove: vanishing correlations sufficient for convergence of

expectations and in probability.
e To prove tightness classify £ particles in types.
e Tightness proof needs a > C as the vanishing correlations proof.

- /
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Graphical construction of FV process

To each particle s = 1,..., N, associate 3 marked Poisson processes:
e Regeneration times. PP («): (a’)nez, marks (A%),cz

e Internal times. PP (7 — a): (b%)nez,
marks ((B!(z), x € A), n € Z)

e Voter times. PP (C): (¢! )nez,
marks ((quw (F;L(:E)a T € A))7 n c Z)

15
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Law of marks:

o P(A; =y) =a(y)/a, y € A;

S A o) gy e an fa

o P(B;(z) =y) = o
P(B,(z) =z) =1~ ZyeA\{x} P(B;,(z) = y).
o P(Fi(x) n:q$f>_1—Pwm@:aneA
T 4\ — 1
. P(Cn_])_ma.]%z

Call w a realization of the marked PP.

o
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Construction of ggtﬁ — g[jgtﬁ y

e Order Poisson times.
e Initial configuration £ at time s .
e Configuration does not change between Poisson events.

e At each regeneration time a’ particle i adopts state A?

regardless the current configuration.

e If at the internal time b’ — the state of particle i is x, then at
time b’ particle ¢ adopts state B? (z) regardless the state of the

other particles.

e If at the voter time ¢! — the state of particle i is z and F(z) = 1,
then at time c! particle ¢ adopts the state of particle C?; if
F'(x) = 0, then particle ¢ does not change state.

e The final configuration is & []Ztﬁ :

- /
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N, _

[s,8]

Lemma 1. The process (&

€.

N,¢
[s,t]

, t > s) is ¥V with initial condition
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Generalized duality Define
w'[s,t] = {m € w : m involved in the definition of f[];[f]w(z)},
Generalized duality equation:
€N (i) = H(w'[s.1],€). (1)

e No explicit formula for H.

e For any time s, 5@75 (¢) depends only on the finite number of

Poisson events contained in w'[s, t].

- /

19



4 )

Theorem 3. If a > 0 the FV process is ergodic.

Proof If number of marks in w’[—oo0,t] is finite, then

&V,() = lim H(w'st,£), i€{l,...,N}, teR

S§——0O
is well defined and does not depend on &.
e By construction (£, t € R) is a stationary FV process.
e The law of £ is unique invariant measure.

e Number of points in w'[—oo0,t] is finite if there is [s(w), s(w) + 1]
in the past of ¢ with one regeneration mark for each k£ and no voter
marks. []

- /
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Particle correlations in the FV process

Proposition 1. Let x,y € A. For allt >0

‘E(niv(wjzgiv(y)) _E(nivj\(fw))E(niV]\(fy))‘ _ %62(% 2)

Assume a > C. Let ™ be distributed according to the unique

invariant measure for the ¥V process with N particles. Then

D) e RO < vate @

~( M

(2
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Coupling

e 4-fold coupling (w*[0,1],w?[0,t],®*[0,],7[0,1])
e w'0,t] = &[0, ]

o O7[0,t] Nw'[0,t] = 0 implies w’[0,t] = &’[0, t]

e marginal process (&[0, t],&7[0,t]) have the same law as two

independent processes with the same marginals as (w*[0, t],w’[0, t]).

22
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P(&0(5) = 2,6 (0) = y) — P& (4) = 2)P(& (i) = y)

= E(l{H(wj,f) =T, H(wz,ﬁ) — y)}—l{H(d)],f) — :E‘), H(C‘Ajzag)

o If
w'Nw! =)
then
w!(s,t) = @ (s,t) and w'(s,t) = &"(s, 1)
Hence,

P& () = 2,65 (0) = ) = P(&° () = 2)P(& (i) = v)]

< Pw'Nnw #0).

y)J
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Lemma 2.

. . 1 C
i J < _2(C—a)t
Plw'Nnuw? #0) < N—la—C(l e )
Proof:
. . 20 b .
Plw'Nw?! #0) < —/ EW*|s, t| EW/ (s, t]ds
N -1 J,

Uls, t] Random walk that grows with rate C' and decreases with
rate a. Expectation is bounded by e(t=5)(C—)

- 20 [*
P(w" j < == 2(C—a)s
(W' Nw #@)_N_l/oe ds

which gives the result. []

o
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Proof of Proposition 1 Take 1 and £ such that
n(z) = 3, 1{(j) = 2}. Then

E(m ’ (szgt 7 (y)) _ %ZZP( i\f,ﬁ(,[:) Zﬂf,fi\f’g(j) — )

B ) ;(sz M) = 2P G) =)

Using this, and (4) with a = 0 we get (2).
Assume o > C. Taking t = oo in (4) we get (3). [

- /
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Tightness

Proposition 2. Forallt >0,z € A,1=1,...,N and pu,

Ent;(m) < eCt Zu(z)Pt(Z,w)

zeA

As a consequence (En; " /N, N € N) is tight.

26
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Assume o > 0 and define u, on A by
Ay

« — T A7
o () o TE

where a, = inf, q(z,x). For z,x € A define
Ry(z,x) = / e MPy(z,x)dt.
0

Proposition 3. Assume a > C and let n distributed with

invariant measure for ¥vV. Then for x € A,

C
N
<
N (@) € —= HaR(a-c) ()

As a consequence, the family of measures (n™ /N, N € N) is tight.

o

)
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Types
e Particle ¢ is type 0 at time ¢ if it has not been absorbed in the

time interval [0, ¢].

e If at absorption time s particle ¢ jumps over particle ;7 which has
type k, then at time s particle ¢ changes its type to k£ + 1.

P(¢&," " (i) = x, type(i, t) = 0) = Z,u VP (2, ).
zeA

Ai(z, k) =: P(&tN’M(i) =z, type(i, ) = k)

28



Proof of Proposition 2 Recursive hypothesis:

k
A k) < S )P )

zeA

By (5) the statement is true for k = 0.
t
Az, k+1) < / C Y Ay, k) P_s(y,x) ds.
0 yeN
Using recursive hypothesis,

B ]/tcj(C%)k
=/ . > w(2) Y Pu(z,y)Pi_s(y, x)ds

zeA yeN

' Z N(Z)Pt(z> CC)
T zEA

(Ct)t1
(k+1)

by Chapman-Kolmogorov. This proves (5). []

o
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Proof of Proposition 3 Under the hypothesis @ > C the process

(&N (i), type(i,t)),i=1,...,N), t € R)

is Markovian constructed in a stationary way

A(z, k) := P(&] (1) = =, type(i, s) = k)

does not depend on s.

Last regeneration mark of site ¢ before time s happened at time
s — T', where T is exponential of rate c. Then,

A(x,0) = / ae O‘tz,ua VPi(z,2)dt = paRa(x).

z€A
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Similar reasoning implies

Alz, k) < / h e"C Y Az, k — 1)Py(z, ) dt.

z€EA

C C'\* I
- < _I-]- .
= —aAk_lRa(m) < (—&) po R ()

R%(z,x) expectation of P, (z,), 7 sum of k independent

exponential \. Multiplying and dividing by (a — C),

PEN(i) =) < i (5) (1= ) okl

Expectation of i, RE, K geometric with p =1 — (C/a).

C
oz—C'ua

P&, (i) = 2) < Ro-c(z). O

o
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