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Quasi stationary distributions (qsd)

Irreducible jump Markov process with rates Q = (q(x, y)) on

Λ ∪ {0}. Pt(x, y) transition matrix.

Λ countable and 0 absorbing state.

Zt is ergodic with a unique invariant measure δ0

Law starting with µ conditioned to non absorption until time t:

ϕµ
t (x) =

∑

y∈Λ µ(y)Pt(y, x)

1 −
∑

y∈Λ µ(y)Pt(y, 0)
, x ∈ Λ.

A quasi stationary distribution (qsd) is a probability measure ν on

Λ satisfying

ϕν
t = ν
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ν is a Left eigenvector for the restriction of the matrix Q to Λ with

eigenvalue λν = −
∑

y∈Λ ν(y)q(y, 0): ν must satisfy the system

∑

y∈Λ

ν(y) q(y, x) =
(

−
∑

y∈Λ

ν(y)q(y, 0)
)

ν(x), ∀x ∈ Λ.

νQ = λνν

∑

y∈Λ

ν(y) [q(y, x) + q(y, 0)ν(x)] = 0, ∀x ∈ Λ.

recall q(x, x) = −
∑

y∈Λ∪{0}\{x}

q(x, y)

∑

y∈Λ\{x}

ν(y) [q(y, x) + q(y, 0)ν(x)] = ν(x)
∑

y∈Λ\{x}

(

q(x, y) + q(x, 0)ν(y)
)

(balance equations)
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Yaglom limit for µ:

lim
t→∞

ϕµ
t (y) , y ∈ Λ

if it exists and it is a probability on Λ.

Λ finite, Darroch and Seneta (1967): there exists a unique qsd ν

for Q and that the Yaglom limit converges to ν independently of

the initial distribution.

Λ infinite: neither existence nor uniqueness of qsd are guaranteed.

Example: asymmetric random walk

p = q(i, i + 1) = 1 − q(i, i − 1), for i ≥ 0. In this case there are

infinitely many qsd when p < 1/2 and none when p ≥ 1/2.

Minimal qsd (for p < 1/2):

ν(x) ∼ x
( p

1 − p

)x/2
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Existence

For Λ = N under the condition

lim
x→∞

P(R > t|Z0 = x) = 0

R absorption time, Ferrari, Kesten, Mart́ınez and Picco [6]:

existence of qsd ⇐⇒ EeθR < ∞

for some θ > 0.
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Existence

Ergodicity coefficient of Q:

α = α(Q) :=
∑

z∈Λ

inf
x∈Λ\{z}

q(x, z)

Maximal absorbing rate of Q:

C = C(Q) := sup
x∈Λ

q(x, 0)

Theorem 1. If α > C then there exists a unique qsd ν for Q and

the Yaglom limit converges to ν for any initial measure µ.

Jacka and Roberts [10]: under α > C uniqueness and Yaglom limit.
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The Fleming-Viot process (fv) .

• System of N > 0 particles evolving on Λ.

• Particles move independently with rates Q between absorptions.

• When a particle is absorbed, it chooses one of the other particles

uniformly and jumps instantaneously to its position.

Generator (Master equation):

Lf(ξ) =
N

∑

i=1

∑

y∈Λ\{ξ(i)}

[

q(ξ(i), y) + q(ξ(i), 0)
η(ξ, y)

N − 1

]

(f(ξi,y) − f(ξ))

where ξi,y(j) = y for j = i and ξi,y(j) = ξ(j) otherwise and

η(ξ, y) :=
N

∑

i=1

1{ξ(i) = y}.
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Empirical profile and conditioned process

ξt process in Λ(1,...,N);

ηt =∈ N
Λ unlabeled process,

ηt(x) = number of ξ particles in state x at time t.

Theorem 2. Let µ probability on Λ. Assume

(ξN,µ
0 (i), i = 1, . . . , N) iid with law µ. Then, for t > 0 and x ∈ Λ,

lim
N→∞

EηN,µ
t (x)

N
= ϕµ

t (x)

lim
N→∞

ηN,µ
t (x)

N
= ϕµ

t (x), in Probability

Fleming and Viot [8], Burdzy, Holyst and March [1], Grigorescu

and Kang [9] and Löbus [12] in a Brownian motion setting.
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Ergodicity of fv

Λ finite, fv Markov in finite state space

Hence ergodic (there exists unique stationary measure and the

process converges to the stationary measure).

For Λ infinite:

Theorem 3. If α > 0, then for each N the fv process with N

particles is ergodic.
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Stationary empirical profile and qsd

Assume ergodicity.

Let ηN be distributed with the unique invariant measure.

Theorem 4. α > C. For each x ∈ Λ, the following limits exist

lim
N→∞

ηN (x)

N
= ν(x), in Probability

and ν is the unique qsd for Q.
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Sketch of proofs

Existence part of Theorem 1 corollary of Theorem 4. Uniqueness:

Jacka and Robert.

Theorem 3: stationary version of the process “from the past” as in

perfect simulation.

11



Theorems 2 and 4 based on asymptotic independence.

• ϕt unique solution of

d

dt
ϕµ

t (x) =
∑

y∈Λ

ϕµ
t (y)[q(y, x) + q(y, 0)ϕµ

t (x)], x ∈ Λ

• ηt satisfies

d

dt
E

(ηN,µ
t (x)

N

)

=
∑

y∈Λ

E

(ηN,µ
t (y)

N

(

q(y, x) + q(y, 0)
ηN,µ

t (x)

N − 1

))

• We prove:

E[ηN,µ
t (y) ηN,µ

t (x)] − EηN,µ
t (y) EηN,µ

t (x) = O(N)
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• qsd satisfies
∑

y∈Λ

ν(y) [q(y, x) + q(y, 0)ν(x)] = 0, x ∈ Λ.

• ηN invariant for fv satisfies:

∑

y∈Λ

E

(ηN (y)

N

(

q(y, x) + q(y, 0)
ηN (x)

N − 1

))

= 0, x ∈ Λ.

• Under α > C:

E[ηN (y) ηN (x)] − EηN (y) EηN (x) = O(N)

• Variance order 1/N , setting x = y.

• Finally we show (ϕN,µ
t , N ∈ N) and (ρN , N ∈ N) are tight.
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Comments

• Fleming-Viot permits to show existence of a qsd in the α > C

case (new).

• Compared with Brownian motion in a bounded region with

absorbing boundary (Burdzy, Holyst and March [1], Grigorescu and

Kang [9] and Löbus [12] and other related works):

• Existence of the fv process immediate here.

• they prove the convergence without factorization.

• We prove: vanishing correlations sufficient for convergence of

expectations and in probability.

• To prove tightness classify ξ particles in types.

• Tightness proof needs α > C as the vanishing correlations proof.
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Graphical construction of fv process

To each particle i = 1, . . . , N , associate 3 marked Poisson processes:

• Regeneration times. PP (α): (ai
n)n∈Z, marks (Ai

n)n∈Z

• Internal times. PP (q̄ − α): (bi
n)n∈Z,

marks ((Bi
n(x), x ∈ Λ), n ∈ Z)

• Voter times. PP (C): (ci
n)n∈Z,

marks ((Ci
n, (F i

n(x), x ∈ Λ)), n ∈ Z)
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Law of marks:

• P(Ai
n = y) = α(y)/α, y ∈ Λ;

• P(Bi
n(x) = y) =

q(x, y) − α(y)

q̄ − α
, x ∈ Λ, y ∈ Λ \ {x};

P(Bi
n(x) = x) = 1 −

∑

y∈Λ\{x} P(Bi
n(x) = y).

• P (F i
n(x) = 1) =

q(x, 0)

C
= 1 − P (F i

n(x) = 0), x ∈ Λ.

• P (Ci
n = j) =

1

N − 1
, j 6= i.

Call ω a realization of the marked PP.
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Construction of ξN,ξ
[s,t] = ξN,ξ

[s,t],ω

• Order Poisson times.

• Initial configuration ξ at time s .

• Configuration does not change between Poisson events.

• At each regeneration time ai
n particle i adopts state Ai

n

regardless the current configuration.

• If at the internal time bi
n− the state of particle i is x, then at

time bi
n particle i adopts state Bi

n(x) regardless the state of the

other particles.

• If at the voter time ci
n− the state of particle i is x and F i

n(x) = 1,

then at time ci
n particle i adopts the state of particle Ci

n; if

F i
n(x) = 0, then particle i does not change state.

• The final configuration is ξN,ξ
[s,t].
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Lemma 1. The process (ξN,ξ
[s,t], t ≥ s) is fv with initial condition

ξN,ξ
[s,s] = ξ.
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Generalized duality Define

ωi[s, t] = {m ∈ ω : m involved in the definition of ξN,ξ
[s,t],ω(i)},

Generalized duality equation:

ξN,ξ
[s,t],ω(i) = H(ωi[s, t], ξ). (1)

• No explicit formula for H.

• For any time s, ξN,ξ
[s,t](i) depends only on the finite number of

Poisson events contained in ωi[s, t].
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Theorem 3. If α > 0 the fv process is ergodic.

Proof If number of marks in ωi[−∞, t] is finite, then

ξN
t,ω(i) =: lim

s→−∞
H(ωi[s, t], ξ), i ∈ {1, . . . , N}, t ∈ R

is well defined and does not depend on ξ.

• By construction (ξN
t , t ∈ R) is a stationary fv process.

• The law of ξN
t is unique invariant measure.

• Number of points in ωi[−∞, t] is finite if there is [s(ω), s(ω) + 1]

in the past of t with one regeneration mark for each k and no voter

marks.
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Particle correlations in the fv process

Proposition 1. Let x, y ∈ Λ. For all t > 0

∣

∣

∣
E

(ηN
t (x)ηN

t (y)

N2

)

− E

(ηN
t (x)

N

)

E

(ηN
t (y)

N

)
∣

∣

∣
<

1

N
e2Ct (2)

Assume α > C. Let ηN be distributed according to the unique

invariant measure for the fv process with N particles. Then

∣

∣

∣
E

(ηN (x)ηN (y)

N2

)

− E

(ηN (x)

N

)

E

(ηN (y)

N

)
∣

∣

∣
<

1

N

α

α − C
(3)
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Coupling

• 4-fold coupling (ωi[0, t], ωj [0, t], ω̂i[0, t], ω̂j[0, t])

• ωi[0, t] = ω̂i[0, t]

• ω̂j [0, t] ∩ ωi[0, t] = ∅ implies ωj [0, t] = ω̂j [0, t]

• marginal process (ω̂i[0, t], ω̂j [0, t]) have the same law as two

independent processes with the same marginals as (ωi[0, t], ωj[0, t]).
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P(ξN,ξ
t (j) = x, ξN,ξ

t (i) = y) − P(ξN,ξ
t (j) = x)P(ξN,ξ

t (i) = y)

= E

(

1{H(ωj , ξ) = x, H(ωi, ξ) = y)}−1{H(ω̂j , ξ) = x), H(ω̂i, ξ) = y)}
)

• If

ωi ∩ ωj = ∅

then

ωj(s, t) = ω̂j(s, t) and ωi(s, t) = ω̂i(s, t)

Hence,

|P(ξN,ξ
t (j) = x, ξN,ξ

t (i) = y) − P(ξN,ξ
t (j) = x)P(ξN,ξ

t (i) = y)|

≤ P(ωi ∩ ωj 6= ∅).
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Lemma 2.

P(ωi ∩ ωj 6= ∅) ≤
1

N − 1

C

α − C
(1 − e2(C−α)t) (4)

Proof:

P(ωi ∩ ωj 6= ∅) ≤
2C

N − 1

∫ t

0

EΨ̂i[s, t] EΨ̂j[s, t]ds

Ψ̂i[s, t] Random walk that grows with rate C and decreases with

rate α. Expectation is bounded by e(t−s)(C−α).

P(ωi ∩ ωj 6= ∅) ≤
2C

N − 1

∫ t

0

e2(C−α)sds

which gives the result.
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Proof of Proposition 1 Take η and ξ such that

η(x) =
∑

j 1{ξ(j) = x}. Then

E

(ηN,η
t (x)ηN,η

t (y)

N2

)

=
1

N2

N
∑

i=1

N
∑

j=1

P(ξN,ξ
t (i) = x, ξN,ξ

t (j) = y)

EηN,η
t (x) EηN,η

t (y)

N2
=

1

N2

(

N
∑

i=1

N
∑

j=1

P(ξN,ξ
t (i) = x)P(ξN,ξ

t (j) = y)
)

Using this, and (4) with α = 0 we get (2).

Assume α > C. Taking t = ∞ in (4) we get (3).
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Tightness

Proposition 2. For all t > 0, x ∈ Λ, i = 1, . . . , N and µ,

EηN,µ
t (x)

N
≤ eCt

∑

z∈Λ

µ(z)Pt(z, x).

As a consequence (EηN,µ
t /N, N ∈ N) is tight.
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Assume α > 0 and define µα on Λ by

µα(x) =
αx

α
, x ∈ Λ,

where αx = infz q(z, x). For z, x ∈ Λ define

Rλ(z, x) =

∫ ∞

0

λe−λtPt(z, x)dt.

Proposition 3. Assume α > C and let ηN distributed with

invariant measure for fv. Then for x ∈ Λ,

ρN (x) ≤
C

α − C
µαR(α−C)(x)

As a consequence, the family of measures (ηN/N, N ∈ N) is tight.
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Types

• Particle i is type 0 at time t if it has not been absorbed in the

time interval [0, t].

• If at absorption time s particle i jumps over particle j which has

type k, then at time s particle i changes its type to k + 1.

P(ξN,µ
t (i) = x, type(i, t) = 0) =

∑

z∈Λ

µ(z)Pt(z, x).

At(x, k) =: P(ξN,µ
t (i) = x, type(i, t) = k)
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Proof of Proposition 2 Recursive hypothesis:

At(x, k) ≤
(Ct)k

k!

∑

z∈Λ

µ(z)Pt(z, x) (5)

By (5) the statement is true for k = 0.

At(x, k + 1) ≤

∫ t

0

C
∑

y∈Λ

As(y, k) Pt−s(y, x) ds.

Using recursive hypothesis,

=

∫ t

0

C
(Cs)k

k!

∑

z∈Λ

µ(z)
∑

y∈Λ

Ps(z, y)Pt−s(y, x)ds

=
(Ct)k+1

(k + 1)!

∑

z∈Λ

µ(z)Pt(z, x).

by Chapman-Kolmogorov. This proves (5).
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Proof of Proposition 3 Under the hypothesis α > C the process

((ξN
t (i), type(i, t)), i = 1, . . . , N), t ∈ R)

is Markovian constructed in a stationary way

A(x, k) := P(ξN
s (i) = x, type(i, s) = k)

does not depend on s.

Last regeneration mark of site i before time s happened at time

s − T i
α, where T i

α is exponential of rate α. Then,

A(x, 0) =

∫ ∞

0

αe−αt
∑

z∈Λ

µα(z)Pt(z, x)dt = µαRα(x).
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Similar reasoning implies

A(x, k) ≤

∫ ∞

0

e−αtC
∑

z∈Λ

A(z, k − 1)Ps(z, x) dt.

=
C

α
Ak−1Rα(x) ≤

(C

α

)k

µαRk+1
α (x).

Rk
λ(z, x) expectation of Pτk

(z, x), τk sum of k independent

exponential λ. Multiplying and dividing by (α − C),

P(ξN
s (i) = x) ≤

C

α − C

∞
∑

k=0

(C

α

)k(

1 −
C

α

)

µαRk+1
α (x)

Expectation of µαRK
α , K geometric with p = 1 − (C/α).

P(ξN
s (i) = x) ≤

C

α − C
µαRα−C(x).
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