Reconsidering Trigonometric Integrators

Dion O’Neale

Massey University
Overview

1. Motivation: GRK with $h\omega$ large.
2. Intro to trig integrators and a planar problem.
3. Intro to the F.P.U. problem
4. Numerical results and observations. (But what to observe?)
Motivation

What is the nonlinear stability behaviour of GRK methods for $h\omega$ large?

$$H(q, p) = \frac{1}{2} p^2 + \frac{1}{2}\omega q^2 + \frac{1}{3}Bq^3 + \frac{1}{4}Cq^4 + O(q^5)$$

Methods remain stable, even for $h\omega \gg 1$, except at resonances.

Example

<table>
<thead>
<tr>
<th>Method</th>
<th>Order Resonances</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRK1/midpoint</td>
<td>3rd & 4th order resonances</td>
</tr>
<tr>
<td>GRK2</td>
<td>2nd, 3rd & 4th order resonances</td>
</tr>
<tr>
<td>GRK3</td>
<td>1st, 2nd, 3rd & 4th order resonances</td>
</tr>
</tbody>
</table>
Resonant step sizes are determined by the (linear) stability function
\[R(z) = \frac{P(z)}{Q(z)} = \exp(i\theta), \quad z = h\lambda \]
We get order \(n \) resonance with \(h \) such that \(\theta = \frac{2\pi}{n}, \quad n \in \mathbb{N} \)

Example

The midpoint rule: \[R(Z) = \frac{1+z/2}{1-z/2}, \quad z = \pm \omega i, \text{ i.e. } \theta \to \pi \text{ as } h \to \infty \]

3rd order resonances are generically unstable (Arnold, 1989).
4th order resonances can be stable or unstable (Skeel & Srinivas, 2000).
Motivation

Resonant step sizes are determined by the (linear) stability function $R(z) = P(z)/Q(z) = \exp(i\theta)$, $z = h\lambda$

We get order n resonance with h such that $\theta = 2\pi/n$, $n \in \mathbb{N}$

Example

The midpoint rule: (for the pendulum)
Why don’t trig integrators display these order three and four resonances?
2nd order DEs

\[\ddot{y}(t) = -Ay(t) + g(y(t)), \quad A = \Omega^2 \]

Solution:

\[
\begin{bmatrix}
 y(t) \\
 \dot{y}(t)
\end{bmatrix} = R(t\Omega) \begin{bmatrix}
 y_0 \\
 \dot{y}_0
\end{bmatrix} + \int_0^t \begin{pmatrix}
 \Omega^{-1} \sin(t - s)\Omega \\
 \cos(t - s)\Omega
\end{pmatrix} g(y(s)) ds
\]

\[
R(t\Omega) = \begin{bmatrix}
 \cos(t\Omega) & \Omega^{-1} \sin(t\Omega) \\
 -\Omega \sin(t\Omega) & \cos(t\Omega)
\end{bmatrix}.
\]

i.e. exact for linear part, approximation for \(\int g(y(s)) ds \).
Replace $\int g(y(s)) \, ds$ by

\[
\frac{h}{2} \left[h\Psi g(\Phi y_n) \right. \\
\left. + \Psi_0 g(\Phi y_n) \right]
\]

\[
\Phi = \phi(h\Omega), \quad \Psi = \psi(h\Omega), \quad \psi(\xi) = \text{sinc}(\xi)\psi_1(\xi), \quad \psi_0(\xi) = \cos(\xi)\psi_1(\xi).
\]
Introduction to Trig Integrators

Common filter functions:

<table>
<thead>
<tr>
<th></th>
<th>$\psi(\xi)$</th>
<th>$\phi(\xi)$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>$\text{sinc}^2(\frac{1}{2}\xi)$</td>
<td>1</td>
<td>Gautschi (1961)</td>
</tr>
<tr>
<td>(B)</td>
<td>$\text{sinc}(\xi)$</td>
<td>1</td>
<td>Deuflhard (1979)</td>
</tr>
<tr>
<td>(C)</td>
<td>$\text{sinc}^2(\xi)$</td>
<td>$\text{sinc}(\xi)$</td>
<td>García-Archilla et al. (1999)</td>
</tr>
<tr>
<td>(D)</td>
<td>$\text{sinc}^2(\frac{1}{2}\xi)$</td>
<td>$\text{sinc}(\xi)(1 + \frac{1}{3}\sin^2(\frac{1}{2}\xi))$</td>
<td>Hochbruck & Lubich (1999)</td>
</tr>
<tr>
<td>(E)</td>
<td>$\text{sinc}^2(\xi)$</td>
<td>1</td>
<td>Hairer & Lubich (2000)</td>
</tr>
<tr>
<td>(G)</td>
<td>$\text{sinc}^3(\xi)$</td>
<td>$\text{sinc}(\xi)$</td>
<td>Grimm & Hochbruck (2006)</td>
</tr>
</tbody>
</table>

- Symplectic $\iff \psi(\xi) = \text{sinc}(\xi)\phi(\xi)$
- Finite time energy conservation $\iff \psi(\xi) = \text{sinc}^2(\xi)\phi(\xi)$
- Can find a $h\Omega$ dependent change of coordinates such that the transformed method is symplectic.
Experiments

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(MPT)

D. O’Neale (Massey University)
Question and Answer

Q: Why don’t trig integrators show order three and four resonances?

A: They do — at least for planar problems.

Q: Why hasn’t this been observed before? Have we been looking at the wrong things? Does the number of d.o.f. have something to do with it?
Introduction to the F.P.U. problem

Popular test problem for methods of highly oscillatory DEs.

6 springs, 3 soft (nonlinear) & 3 stiff (harmonic)

\[H(x, \dot{x}) = \frac{1}{2} \dot{x}^T \dot{x} + \frac{1}{2} x^T \Omega x + U(x) \]

Adiabatic invariant

\[I = \sum_j I_j, \quad I_j = \frac{1}{2} (\dot{x}_{1,j}^2 + \omega^2 x_{1,j}^2) \]
Experiments with the F.P.U. problem

(A)

(B)

(C)

(D)

(E)

(G)

(MPT)
More questions:

Q: What happened to those order three and four resonances?
A: They’re still there, but we’re looking at the wrong thing.
More questions:

Q: What happened to those order three and four resonances?
A: They’re still there, but we’re looking at the wrong thing.
Further experiments with the F.P.U. problem

\(h \omega / \pi \)

(A)

(B)

(C)

(D)

(E)

(G)

(MPT)

D. O’Neale (Massey University)

Reconsidering Trig Integrators
Further experiments with the F.P.U. problem
Further experiments with the F.P.U. problem

What if we want smaller errors in $\Delta_{\text{max}}H$ for a fixed $h\omega$?
Further experiments with the F.P.U. problem
Further experiments with the F.P.U. problem

Another comparison:

- The stiff springs slowly exchange oscillatory energy.
- Methods need $\psi(\xi)\phi(\xi) = \text{sinc}(\xi)$ to reproduce this.
Further experiments with the F.P.U. problem

(A)
(B)
(C)
(D)
(E)
(G)
(MPT)
(LF)
Further experiments with the F.P.U. problem

D. O’Neale (Massey University) Reconsidering Trig Integrators
Still more questions:

Q: What’s the effect of getting these properties wrong?

A: It depends which quantity we’re interested in. Perhaps we should be looking at long-time statistics — this is a chaotic system after all.

Take some long runs: \(t \in [0, 1 \times 10^6] \).
Further experiments with the F.P.U. problem

| | σl | $\Delta_{\text{max}} H$ | $\sigma l - \sigma l^{\text{ref}}$ | $\frac{1}{3} \sum |\mathbf{l}_j - \mathbf{l}_j^{\text{ref}}|$ |
|-------|------------|-------------------------|------------------------------------|--------------------------------|
| (A) | 1.47e-02 | 2.58e-03 | -2.18e-04 | 2.37e-03 |
| (B) | 1.31e-02 | 1.56e-02 | -1.84e-03 | 1.49e-02 |
| (C) | 1.14e-02 | 4.45e-02 | -3.60e-03 | 3.82e-03 |
| (D) | 1.48e-02 | 3.23e-03 | -1.89e-04 | 1.31e-03 |
| (E) | 1.12e-02 | 4.38e-02 | -3.74e-03 | 8.74e-03 |
| (G) | 9.20e-03 | 6.56e-02 | -5.77e-03 | 2.37e-02 |
| mid-pt| 1.47e-02 | 7.58e-04 | -2.87e-04 | 3.05e-03 |
| leap-frog | 1.50e-02 | 2.51e-03 | – | – |

D. O’Neale (Massey University) | Reconsidering Trig Integrators
Further experiments with the F.P.U. problem
None of the trig methods manage to capture all properties and some perform worse than the mid-point rule.

Q: What other properties are useful for measuring the performance of a method? Lyapunov exponents...?

Q: Is there a method which manages to get all/several properties correct?