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Formulation of the Problem

Linear systems of the form

dU
dτ

=
1
ε

S(τ)U, U(τ0) = I (1)

with the parameter 0 < ε� 1 and S(τ), U(τ) n × n
matrices.
How they appear?
Typically, when S(t) depends smoothly on time through the
variable τ = t/T , where T determines the time scale and
T →∞
Then one has dU

dt = S(εt)U, ε ≡ 1/T � 1 or equivalently,
eq. (1) with τ ≡ ε t .
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Formulation of the Problem

Two different time-scales in the problem
The parameter ε controls the separation of time-scales: the
smaller ε, the slower the variation of S(εt) on the a priori
fixed fast time-scale t .
The time variable τ = εt on which S varies is called the
slow time-scale
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Some examples

Classical Mechanics. Time-dependent harmonic oscillator,
with

H(q,p, t) =
1
2
(p2 + ω2(εt)q2)

The ‘action’ J(τ) ≡ H(τ)/ω(τ) is an adiabatic invariant: it
remains approximately constant during a time interval of
order 1/ε.
Very important in the old quantum theory (Einstein,
Lorentz, etc.)
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Some examples

Quantum Mechanics. Time-dependent Schrödinger
equation in the adiabatic (infinitely slow) limit

i~
dψ
dτ

=
1
ε

H(τ)ψ, (2)

Quantum Adiabatic Theorem (Born, Fock): absolute values
of the coefficients in the eigenbasis representation of ψ are
adiabatic invariants as ε→ 0.
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Several theoretical issues

Existence of geometric contributions: Berry’s phase (QM),
Hannay’s angle (CM)
(Exponentially small) transition probabilities (QM)
J: ‘...many of the difficulties in determining the degree to
which an adiabatic invariant is invariant have not yet been
overcome to this day’ (Sagdeev, Usikov, Zaslavsky)
Computation of δJ = J(t)− J(t0) for a time interval � 1/ε
Computation of ∆J = J(+∞)− J(−∞): asymptotic
analysis, etc. when ε→ 0 (Littlewood, Meyer, J.B. Keller,
Wasow, Kruskal, Joye, Boutet de Monvel, ...)
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Several theoretical issues

Study of the evolution when ε is not so small
(near-adiabatic regime)
Construction of numerical integration schemes in this
setting (T. Jahnke, C. Lubich, K. Lorenz): adiabatic
integrators
Our approach: Magnus expansion applied to

dU
dτ

=
1
ε

S(τ)U, U(τ0) = I

in the adiabatic picture.
Based on: Klarsfeld, Oteo (1992); C. (1992); C., Oteo, Ros
(1994) and some new results on convergence and
quadratures
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Magnus expansion

Given
dY
dt

= A(t)Y , Y (0) = I

then

Y (t) = eΩ(t), Ω(t) =
∞∑

k=1

Ωk (t)

Ωk (t): sum of k -fold integrals of k − 1 nested commutators
Explicit expressions for all Ωk

Existence of several recurrences
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Magnus expansion

First terms of the expansion (Ai ≡ A(ti)):

Ω1 =

∫ t

0
A(t1)dt1

Ω2 =
1
2

∫ t

0
dt1
∫ t1

0
dt2[A1,A2]

Ω3 =
1
6

∫ t

0
dt1
∫ t1

0
dt2
∫ t2

0
dt3([A1, [A2,A3]] + [A3, [A2,A1]])
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Convergence of the Magnus expansion

Theorem
The Magnus series Ω(t) =

∑∞
k=1 Ωk converges for 0 ≤ t < T

such that ∫ T

0
‖A(s)‖ds < π

and the sum Ω(t) satisfies exp Ω(t) = Y (t)

Moan, Niesen (2006): valid for a n × n real matrix A(t)
C. (2007): A(t) any bounded operator in a Hilbert space
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Adiabatic case

For the problem

dU
dτ

=
1
ε

S(τ)U, U(τ0) = I

with 0 < ε� 1, the above expansion is meaningless, since
Ω(τ) =

∑∞
k=1

1
εk Ωk (t)

the convergence domain is too restrictive:∫ T

0
‖S(τ)‖dτ < ε π

(In fact, the greater ε, the better the convergence of Magnus
expansion)
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The formalism

Suppose we have

U̇ ≡ dU
dτ

=
1
ε

S(τ)U, U(0) = I,

such that S(τ) can be instantaneously diagonalized:

U−1
0 (τ)S(τ)U0(τ) = Λ(τ) = diag(λ1(τ), λ2(τ), . . .)

with
|λk (τ)− λl(τ)| ≥ δm > 0, k 6= l

‘Adiabatic’ picture: change of coordinates to the basis defined
by the eigenvectors of S
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The formalism

Then

U1(τ) = U−1
0 (τ)U(τ)U0(0) U(τ) = U0(τ)U1(τ)U−1

0 (0)

with
U̇1 = S1(τ)U1, S1 =

1
ε
Λ(τ)− U−1

0 U̇0

Now we split S1 = (S1)d + (S1)nd:

(S1)d =
1
ε
Λ− (U−1

0 U̇0)d, (S1)nd = −(U−1
0 U̇0)nd

diagonal + non-diagonal part
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The formalism

Next, ‘interaction’ picture: U1(τ) = Ud(τ)U2(τ), with

Ud(τ) = exp
∫ τ

0
(S1)d(τ1)dτ1

Thus
U̇2 = S2(τ)U2, U2(0) = I

with

S2(τ) = U−1
d (τ)(S1)nd(τ)Ud(τ) = −U−1

d (τ)(U−1
0 U̇0)nd(τ)Ud(τ)
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The formalism

Naive approach:

U2(τ) = I +

∫ τ

0
S2(τ1)U2(τ1)dτ1 (3)

S2(τ) is non-diagonal and, if the eigenvalues os S are
purely imaginary, its elements contain terms of the form
exp( i

εg(τ)) (highly oscillatory)
When ε→ 0, the integral in (3) vanishes
In QM: adiabatic theorem
Computing U2(τ) is all we need to obtain the evolution of U
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Finally, Magnus again

One possible approach: apply Magnus expansion to

U̇2 = S2(τ)U2, U2(0) = I

In this way,
U(τ) = U0(τ)Ud(τ) eΩ(τ) U−1

0 (0)

Preservation of qualitative properties when the series is
truncated. In QM, the scheme is unitary.
More favourable convergence properties. If U0, Ud are
unitary, ∫ τ

0
‖S2(τ1)‖dτ1 ≤

∫ τ

0
‖U̇0(τ)‖dτ1 < π
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Remarks

In (S1)d (and therefore in Ud) there is a term coming from
U−1

0 U̇0

This is a geometric contribution, with consequences in
probability transitions, adiabatic invariant, etc.
The Magnus expansion in the adiabatic picture has
important differences with respect to the direct approach,
both in the convergence domain and in the dependence of
each term Ωk
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Simple harmonic oscillator

q̈ = −ω2(εt)q

In this case,

S(τ) =

(
0 1
−ω2 0

)
with eigenvalues ±iω. Then

S2(τ) =

(
0 − i

ω(τ0)
f (τ)

iω(τ0)f ∗(τ) 0

)

where f (τ) ≡ ω̇
2ω exp

(
−2iε−1 ∫ τ

τ0
ω(τ1)dτ1

)
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Classical simple harmonic oscillator

Convergence domain for the Magnus expansion:∫ τ

τ0

‖S2(τ1)‖2 dτ1 =
1
2

m0

∫ τ

τ0

|(ω̇/ω)|dτ1 < π

with m0 ≡ max{|ω(τ0)|, |ω(τ0)|−1|}
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Wasow example

ω2(τ) = 1 + (1 + 2e−τ )−1

ω(τ) > 0 and ω̇
ω > 0 for all real τ

Limits at infinity: ω− = 1, ω+ =
√

2
Derivative ω(n) = O(e±τ ) as τ → ∓∞

If τ0 → −∞, then ω(τ0) ≈ 1 and m0 = 1,∫ τ

τ0

‖S2(τ1)‖2 dτ1 =
1
2

logω(τ) < π

or ω(τ) < e2π ≈ 535.492 and thus convergence for all τ
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Simple harmonic oscillator

In general, if ω(±∞) = ω± and ω(εt) > const > 0, there
exist the limit values J(+∞) and J(−∞) of the adiabatic
invariant and we can compute

∆J = J(+∞)− J(−∞)

If ω is analytic, then ∆J is exponentially small in 1/ε
One can compute the leading term in the asymptotic
expansion of ∆J when ε→ 0
With Magnus, we can compute δJ = J(τ)− J(τ0) for any
time and thus analyze non-adiabatic effects
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Simple harmonic oscillator

Let ξ(τ) = (q(τ),p(τ))T such that ξ(τ) = U(τ)ξ(τ0).
Let ξU(τ) = (qU(τ),pU(τ))T such that ξU(τ) = U−1

0 ξ(τ)

Then J(τ) = −iqU(τ)pU(τ) and Magnus-1 applied to S2
gives δJ in terms of only one integral
Taking τ0 → −∞ and τ → +∞,

∆J =
sinh 2|K|

2|K|

(
ω−K∗q2

U(−∞)− 1
ω−
Kp2

U(−∞)

)
−2iqU(−∞)pU(−∞) sinh2 |K|
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Simple harmonic oscillator

K =

∫ +∞

−∞
dτ

ω̇(τ)

2ω(τ)
exp

(
−2i
ε

Θ(τ)

)
Θ(τ) =

∫ τ

0
ω(τ1)dτ1

K also appears in the study of the above barrier 1-d
scattering problem
Asymptotic treatment of K assuming that ω(τ) is analytic
on a neighborhood of the real τ -axis and

ω(τ) = ω0(τ−τc)
ν/2

1 +
∞∑

j=1

ωj(τ − τc)
j

 , ν ∈ R, ω0 6= 0

in the vicinity of ‘transition points’ τc (roots, isolated
singular points, branch points).
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Simple harmonic oscillator

If ζc = Θ(τc), Im ζc = −m, then

∆J ' iπν
ν + 2

e−2m/ε(ω− ϕq2
U(−∞) + ω−1

− ϕ∗p2
U(−∞))

where ϕ = exp((2i/ε)Re ζc).
Wasow example: τc = −iπ, ν = 1, Im ζc = −π, and

|∆J| ' P e−2π/ε + o(e−2π/ε)

with P ≡ π
3 |ϕq2

U(−∞) + ϕ∗p2
U(−∞)|
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Prefactor e2π/ε|∆J| vs. ε
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Prototypical problem (Two-level system)

i
dψ
dτ

=
1
ε

H(τ)ψ, (4)

and the Hamiltonian H is the real-symmetric 2× 2-matrix

H(τ) = E(τ)

(
cos θ(τ) sin θ(τ)
sin θ(τ) − cos θ(τ)

)
with eigenvalues ±E(τ). Assume that

2E(τ) ≥ const > 0 for all real τ
θ(τ) is asymptotically constant as τ → ±∞.
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Two-level quantum system

In this case S(τ) = −iH(τ),

U0(τ) =

(
cos θ

2 sin θ
2

sin θ
2 − cos θ

2

)
= U−1

0 (τ),

Ud(τ) =

(
e−iw(τ)/ε 0

0 eiw(τ)/ε

)
with w(τ) ≡

∫ τ
τ0

E(τ1)dτ1
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Convergence condition

U̇2 = S2(τ)U2

S2(τ) =
θ̇

2

(
0 −e2iw(τ)/ε

e−2iw(τ)/ε 0

)
so that ∫ τ

0
‖S2(τ1)‖2 dτ1 =

1
2
|θ(τ)− θ(τ0)|

but |θ(τ)− θ(τ0)| < 2π always. Therefore, Magnus expansion is
always convergent
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Velocity of convergence?

General result (Moan, 2002)

‖Ωm‖ ≤ 2m−1 fm

(∫ τ

τ0

‖S2(τ1)‖dτ1

)m

with f1 = 1, f2 = 1
4 , f3 = 5

72 , f4 = 11
576 , etc.

fm+1/fm ≈ 0.1 (not very rapid)
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Specific example

Spin 1/2 system in a rotating magnetic field that makes an
angle α (constant) with the z axis with period of rotation
T = 2π/ω.

Here ε = 1/T
Hamiltonian

H(τ) =
1
2
γ ~B(τ) · ~σ

γ: gyromagnetic ratio
Magnetic field ~B(τ) = B(sinα cos 2πτ, sinα sin 2πτ, cosα)

σi : Pauli matrices
The exact solution is known
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Spin 1/2 system

S2(τ) = iπ sinα
(

0 e−2iβτ

e2iβτ 0

)
with β = −γB

2ε + π cosα, and∫ τ

τ0

‖S2(τ1)‖2 dτ1 = π | sinα| (τ − τ0)

which is always < π, since 0 ≤ τ − τ0 ≤ 1.

Magnus expansion in the adiabatic picture is always convergent
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Transition probability

Transition between the two eigenstates of H that belong to
spin projections ±1/2 along the rotating magnetic field
~B(τ).
The exact result Pex is known.
Pex vanishes in the adiabatic limit (no transition at all)
We compare with the result achieved with the Magnus
expansion
It is very easy to compute any term Ωk (τ)

PM(τ) = |(U2(τ))21|2

Numerical experiments: α = 2π/3, τ0 = 0, τ = 1.
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Transition probability

We compute up to Ω11(τ) and the corresponding PM(τ)
obtained with Ω[p] =

∑p
i=1 Ωi up to p = 11

No contribution from Ω2i

Compare with the exact result
Gauge the quality of the different approximations as a
function of ξ ≡ γB/ε



Adiabatic evolution of linear problems
Magnus expansion: direct approach

Magnus expansion: adiabatic picture
Analysis of two examples

Conclusions

Classical simple harmonic oscillator
Time-dependent two-state quantum system

Exact transition probability vs. ξ = γB/ε
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Comparison Magnus – Exact result

p Diff. (ξ = 10) Diff. (ξ = 20)
1 −6.57× 10−2 1.77× 10−2

3 1.63× 10−2 1.43× 10−3

5 −2.52× 10−3 7.57× 10−5

7 5.87× 10−4 1.19× 10−5

9 −1.19× 10−4 −9.76× 10−7

11 2.93× 10−5 1.31× 10−7
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Error with p = 5 vs. ξ = γB/ε
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Classical simple harmonic oscillator
Time-dependent two-state quantum system

Remarks

Velocity of convergence in Magnus consistent with
theoretical estimates
Very small errors for ξ ≥ 10, even only with the first terms
in the expansion
Smaller errors with large ξ and more terms in Magnus
Good description in the near-adiabatic regime
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Conclusions

Convergence of Magnus expansion assured in the
adiabatic picture
For the examples analyzed, the first terms in Magnus
provide a good description in the near-adiabatic regime
The approximation is expressed in terms of integrals
In general, it will be difficult to compute exactly the
integrals appearing in Ωk , k ≥ 2. So, what to do then?
Integrand: highly oscillatory functions. Therefore, Filon
quadratures are particularly suitable.
This has already been formulated by Iserles & Nørsett,
even for nested integrals
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Idea: either consider only one quadrature in the whole
integration interval or divide the interval in a small number
of subintervals and then apply Filon-like quadratures
This approach should be competitive with other schemes
(Jahnke et al.)
Good results for (not so) small ε, and not only in the limit
ε→ 0
Work in progress...
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