Adiabatic evolution of linear problems
Magnus expansion: direct approach
Magnus expansion: adiabatic picture
Analysis of two examples
Conclusions

The Magnus expansion in the adiabatic picture

Fernando Casas

Fernando.Casas@mat.uji.es

Departament de Matemàtiques Universitat Jaume I Castellón, Spain

Cambridge, July 2007

Outline

- Adiabatic evolution of linear problems
- Magnus expansion: direct approach
- Magnus expansion: adiabatic picture
- Analysis of two examples
 - Classical simple harmonic oscillator
 - Time-dependent two-state quantum system
- Conclusions

Linear systems of the form

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau) U, \qquad U(\tau_0) = I \tag{1}$$

with the parameter $0 < \varepsilon \ll 1$ and $S(\tau)$, $U(\tau)$ $n \times n$ matrices.

- How they appear?
- Typically, when S(t) depends smoothly on time through the variable $\tau=t/T$, where T determines the time scale and $T\to\infty$
- Then one has $\frac{dU}{dt} = S(\varepsilon t)U$, $\varepsilon \equiv 1/T \ll 1$ or equivalently, eq. (1) with $\tau \equiv \varepsilon t$.

Linear systems of the form

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau) U, \qquad U(\tau_0) = I \tag{1}$$

with the parameter $0 < \varepsilon \ll 1$ and $S(\tau)$, $U(\tau)$ $n \times n$ matrices.

- How they appear?
- Typically, when S(t) depends smoothly on time through the variable $\tau=t/T$, where T determines the time scale and $T\to\infty$
- Then one has $\frac{dU}{dt} = S(\varepsilon t)U$, $\varepsilon \equiv 1/T \ll 1$ or equivalently, eq. (1) with $\tau \equiv \varepsilon t$.

Linear systems of the form

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau)U, \qquad U(\tau_0) = I \tag{1}$$

with the parameter $0 < \varepsilon \ll 1$ and $S(\tau)$, $U(\tau)$ $n \times n$ matrices.

- How they appear?
- Typically, when S(t) depends smoothly on time through the variable $\tau=t/T$, where T determines the time scale and $T\to\infty$
- Then one has $\frac{dU}{dt} = S(\varepsilon t)U$, $\varepsilon \equiv 1/T \ll 1$ or equivalently, eq. (1) with $\tau \equiv \varepsilon t$.

- Two different time-scales in the problem
- The parameter ε controls the separation of time-scales: the smaller ε , the slower the variation of $S(\varepsilon t)$ on the a priori fixed fast time-scale t.
- The time variable $\tau = \varepsilon t$ on which S varies is called the slow time-scale

 <u>Classical Mechanics</u>. Time-dependent harmonic oscillator, with

$$H(q,p,t) = \frac{1}{2}(p^2 + \omega^2(\varepsilon t)q^2)$$

- The 'action' $J(\tau) \equiv H(\tau)/\omega(\tau)$ is an adiabatic invariant: it remains approximately constant during a time interval of order $1/\varepsilon$.
- Very important in the old quantum theory (Einstein, Lorentz, etc.)

 <u>Classical Mechanics</u>. Time-dependent harmonic oscillator, with

$$H(q,p,t) = \frac{1}{2}(p^2 + \omega^2(\varepsilon t)q^2)$$

- The 'action' $J(\tau) \equiv H(\tau)/\omega(\tau)$ is an adiabatic invariant: it remains approximately constant during a time interval of order $1/\varepsilon$.
- Very important in the old quantum theory (Einstein, Lorentz, etc.)

 Quantum Mechanics. Time-dependent Schrödinger equation in the adiabatic (infinitely slow) limit

$$i\hbar \frac{d\psi}{d\tau} = \frac{1}{\varepsilon}H(\tau)\psi,$$
 (2)

• Quantum Adiabatic Theorem (Born, Fock): absolute values of the coefficients in the eigenbasis representation of ψ are adiabatic invariants as $\varepsilon \to 0$.

 Quantum Mechanics. Time-dependent Schrödinger equation in the adiabatic (infinitely slow) limit

$$i\hbar \frac{d\psi}{d\tau} = \frac{1}{\varepsilon}H(\tau)\psi,$$
 (2)

• Quantum Adiabatic Theorem (Born, Fock): absolute values of the coefficients in the eigenbasis representation of ψ are adiabatic invariants as $\varepsilon \to 0$.

- Existence of geometric contributions: Berry's phase (QM), Hannay's angle (CM)
- (Exponentially small) transition probabilities (QM)
- J: '...many of the difficulties in determining the degree to which an adiabatic invariant is invariant have not yet been overcome to this day' (Sagdeev, Usikov, Zaslavsky)
- Computation of $\delta J = J(t) J(t_0)$ for a time interval $\gg 1/\varepsilon$
- Computation of $\Delta J = J(+\infty) J(-\infty)$: asymptotic analysis, etc. when $\varepsilon \to 0$ (Littlewood, Meyer, J.B. Keller, Wasow, Kruskal, Joye, Boutet de Monvel, ...)

- Existence of geometric contributions: Berry's phase (QM), Hannay's angle (CM)
- (Exponentially small) transition probabilities (QM)
- J: '...many of the difficulties in determining the degree to which an adiabatic invariant is invariant have not yet been overcome to this day' (Sagdeev, Usikov, Zaslavsky)
- Computation of $\delta J = J(t) J(t_0)$ for a time interval $\gg 1/\varepsilon$
- Computation of $\Delta J = J(+\infty) J(-\infty)$: asymptotic analysis, etc. when $\varepsilon \to 0$ (Littlewood, Meyer, J.B. Keller, Wasow, Kruskal, Joye, Boutet de Monvel, ...)

- Existence of geometric contributions: Berry's phase (QM), Hannay's angle (CM)
- (Exponentially small) transition probabilities (QM)
- J: '...many of the difficulties in determining the degree to which an adiabatic invariant is invariant have not yet been overcome to this day' (Sagdeev, Usikov, Zaslavsky)
- Computation of $\delta J = J(t) J(t_0)$ for a time interval $\gg 1/\varepsilon$
- Computation of $\Delta J = J(+\infty) J(-\infty)$: asymptotic analysis, etc. when $\varepsilon \to 0$ (Littlewood, Meyer, J.B. Keller, Wasow, Kruskal, Joye, Boutet de Monvel, ...)

- Study of the evolution when ε is not so small (near-adiabatic regime)
- Construction of numerical integration schemes in this setting (T. Jahnke, C. Lubich, K. Lorenz): adiabatic integrators
- Our approach: Magnus expansion applied to

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau)U, \qquad U(\tau_0) = I$$

in the adiabatic picture.

 Based on: Klarsfeld, Oteo (1992); C. (1992); C., Oteo, Ros (1994) and some new results on convergence and quadratures

- Study of the evolution when ε is not so small (near-adiabatic regime)
- Construction of numerical integration schemes in this setting (T. Jahnke, C. Lubich, K. Lorenz): adiabatic integrators
- Our approach: Magnus expansion applied to

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau)U, \qquad U(\tau_0) = I$$

in the adiabatic picture.

 Based on: Klarsfeld, Oteo (1992); C. (1992); C., Oteo, Ros (1994) and some new results on convergence and quadratures

- Study of the evolution when ε is not so small (near-adiabatic regime)
- Construction of numerical integration schemes in this setting (T. Jahnke, C. Lubich, K. Lorenz): adiabatic integrators
- Our approach: Magnus expansion applied to

$$\frac{dU}{d au} = \frac{1}{\varepsilon} S(au)U, \qquad U(au_0) = I$$

in the adiabatic picture.

 Based on: Klarsfeld, Oteo (1992); C. (1992); C., Oteo, Ros (1994) and some new results on convergence and quadratures

Magnus expansion

Given

$$\frac{dY}{dt} = A(t)Y, \qquad Y(0) = I$$

then

$$Y(t) = e^{\Omega(t)}, \qquad \Omega(t) = \sum_{k=1}^{\infty} \Omega_k(t)$$

- $\Omega_k(t)$: sum of k-fold integrals of k-1 nested commutators
- Explicit expressions for all Ω_k
- Existence of several recurrences

Magnus expansion

First terms of the expansion $(A_i \equiv A(t_i))$:

$$\Omega_{1} = \int_{0}^{t} A(t_{1}) dt_{1}$$

$$\Omega_{2} = \frac{1}{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} [A_{1}, A_{2}]$$

$$\Omega_{3} = \frac{1}{6} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \int_{0}^{t_{2}} dt_{3} ([A_{1}, [A_{2}, A_{3}]] + [A_{3}, [A_{2}, A_{1}]])$$

Convergence of the Magnus expansion

Theorem

The Magnus series $\Omega(t) = \sum_{k=1}^{\infty} \Omega_k$ converges for $0 \le t < T$ such that

$$\int_0^T \|A(s)\| ds < \pi$$

and the sum $\Omega(t)$ satisfies $\exp \Omega(t) = Y(t)$

- Moan, Niesen (2006): valid for a $n \times n$ real matrix A(t)
- C. (2007): A(t) any bounded operator in a Hilbert space

Adiabatic case

For the problem

$$\frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau)U, \qquad U(\tau_0) = I$$

with $0 < \varepsilon \ll 1$, the above expansion is meaningless, since

- $\Omega(\tau) = \sum_{k=1}^{\infty} \frac{1}{\varepsilon^k} \Omega_k(t)$
- the convergence domain is too restrictive:

$$\int_0^T \|S(\tau)\| d\tau < \varepsilon \, \pi$$

(In fact, the greater ε , the better the convergence of Magnus expansion)

Suppose we have

$$\dot{U} \equiv \frac{dU}{d\tau} = \frac{1}{\varepsilon} S(\tau) U, \qquad U(0) = I,$$

such that $S(\tau)$ can be instantaneously diagonalized:

$$U_0^{-1}(\tau)S(\tau)U_0(\tau) = \Lambda(\tau) = \operatorname{diag}(\lambda_1(\tau), \lambda_2(\tau), \ldots)$$

with

$$|\lambda_k(\tau) - \lambda_l(\tau)| \ge \delta_m > 0, \qquad k \ne l$$

'Adiabatic' picture: change of coordinates to the basis defined by the eigenvectors of *S*

Then

$$U_1(\tau) = U_0^{-1}(\tau)U(\tau)U_0(0)$$
 $U(\tau) = U_0(\tau)U_1(\tau)U_0^{-1}(0)$

with

$$\dot{U}_1 = S_1(\tau)U_1, \qquad S_1 = \frac{1}{\varepsilon}\Lambda(\tau) - U_0^{-1}\dot{U}_0$$

Now we split $S_1 = (S_1)_d + (S_1)_{nd}$:

$$(S_1)_d = \frac{1}{\varepsilon} \Lambda - (U_0^{-1} \dot{U}_0)_d, \qquad (S_1)_{nd} = -(U_0^{-1} \dot{U}_0)_{nd}$$

diagonal + non-diagonal part

Next, 'interaction' picture: $U_1(\tau) = U_d(\tau)U_2(\tau)$, with

$$U_{\mathrm{d}}(au) = \exp \int_0^ au (S_1)_{\mathrm{d}}(au_1) d au_1$$

Thus

$$\dot{U}_2 = S_2(\tau)U_2, \qquad U_2(0) = I$$

with

$$S_2(\tau) = U_d^{-1}(\tau)(S_1)_{nd}(\tau)U_d(\tau) = -U_d^{-1}(\tau)(U_0^{-1}\dot{U}_0)_{nd}(\tau)U_d(\tau)$$

Naive approach:

$$U_2(\tau) = I + \int_0^{\tau} S_2(\tau_1) U_2(\tau_1) d\tau_1$$
 (3)

- $S_2(\tau)$ is non-diagonal and, if the eigenvalues os S are purely imaginary, its elements contain terms of the form $\exp(\frac{i}{\varepsilon}g(\tau))$ (highly oscillatory)
- When $\varepsilon \to 0$, the integral in (3) vanishes
- In QM: adiabatic theorem
- Computing $U_2(\tau)$ is all we need to obtain the evolution of U

Finally, Magnus again

One possible approach: apply Magnus expansion to

$$\dot{U}_2 = S_2(\tau)U_2, \qquad U_2(0) = I$$

In this way,

$$U(\tau) = U_0(\tau)U_{\rm d}(\tau) e^{\Omega(\tau)} U_0^{-1}(0)$$

- Preservation of qualitative properties when the series is truncated. In QM, the scheme is unitary.
- More favourable convergence properties. If U₀, U_d are unitary,

$$\int_0^{\tau} \|S_2(\tau_1)\| d\tau_1 \leq \int_0^{\tau} \|\dot{U}_0(\tau)\| d\tau_1 < \pi$$

Remarks

- In $(S_1)_d$ (and therefore in U_d) there is a term coming from $U_0^{-1}\dot{U}_0$
- This is a geometric contribution, with consequences in probability transitions, adiabatic invariant, etc.
- The Magnus expansion in the adiabatic picture has important differences with respect to the direct approach, both in the convergence domain and in the dependence of each term Ω_k

$$\ddot{q} = -\omega^2(\varepsilon t)q$$

In this case,

$$S(au) = \left(egin{array}{cc} 0 & 1 \ -\omega^2 & 0 \end{array}
ight)$$

with eigenvalues $\pm i\omega$. Then

$$S_2(\tau) = \left(egin{array}{ccc} 0 & -rac{i}{\omega(au_0)}f(au) \ i\omega(au_0)f^*(au) & 0 \end{array}
ight)$$

where
$$f(au) \equiv rac{\dot{\omega}}{2\omega} \exp\left(-2iarepsilon^{-1}\int_{ au_0}^{ au}\omega(au_1)d au_1
ight)$$

Classical simple harmonic oscillator

Convergence domain for the Magnus expansion:

$$\int_{\tau_0}^{\tau} \| \mathcal{S}_2(\tau_1) \|_2 \, d\tau_1 = \frac{1}{2} m_0 \int_{\tau_0}^{\tau} |(\dot{\omega}/\omega)| d\tau_1 < \pi$$

with
$$m_0 \equiv \max\{|\omega(\tau_0)|, |\omega(\tau_0)|^{-1}|\}$$

Wasow example

$$\omega^2(\tau) = 1 + (1 + 2e^{-\tau})^{-1}$$

- ullet $\omega(au)>0$ and $rac{\dot{\omega}}{\omega}>0$ for all real au
- Limits at infinity: $\omega_- = 1$, $\omega_+ = \sqrt{2}$
- Derivative $\omega^{(n)} = \mathcal{O}(e^{\pm \tau})$ as $\tau \to \mp \infty$

If $\tau_0 \to -\infty$, then $\omega(\tau_0) \approx 1$ and $m_0 = 1$,

$$\int_{\tau_0}^{\tau} \|S_2(\tau_1)\|_2 d\tau_1 = \frac{1}{2} \log \omega(\tau) < \pi$$

or $\omega(au) < e^{2\pi} pprox$ 535.492 and thus convergence for all au

• In general, if $\omega(\pm\infty)=\omega_{\pm}$ and $\omega(\varepsilon t)>{\rm const}>0$, there exist the limit values $J(+\infty)$ and $J(-\infty)$ of the adiabatic invariant and we can compute

$$\Delta J = J(+\infty) - J(-\infty)$$

- If ω is analytic, then ΔJ is exponentially small in $1/\varepsilon$
- One can compute the leading term in the asymptotic expansion of ΔJ when $\varepsilon \to 0$
- With Magnus, we can compute $\delta J = J(\tau) J(\tau_0)$ for any time and thus analyze non-adiabatic effects

• In general, if $\omega(\pm\infty) = \omega_{\pm}$ and $\omega(\varepsilon t) > \mathrm{const} > 0$, there exist the limit values $J(+\infty)$ and $J(-\infty)$ of the adiabatic invariant and we can compute

$$\Delta J = J(+\infty) - J(-\infty)$$

- If ω is analytic, then ΔJ is exponentially small in $1/\varepsilon$
- One can compute the leading term in the asymptotic expansion of ΔJ when $\varepsilon \to 0$
- With Magnus, we can compute $\delta J = J(\tau) J(\tau_0)$ for any time and thus analyze non-adiabatic effects

- Let $\xi(\tau) = (q(\tau), p(\tau))^T$ such that $\xi(\tau) = U(\tau)\xi(\tau_0)$.
- Let $\xi_U(au) = (q_U(au), p_U(au))^T$ such that $\xi_U(au) = U_0^{-1} \xi(au)$
- Then $J(\tau) = -iq_U(\tau)p_U(\tau)$ and Magnus-1 applied to S_2 gives δJ in terms of only one integral
- Taking $\tau_0 \to -\infty$ and $\tau \to +\infty$,

$$\Delta J = \frac{\sinh 2|\mathcal{K}|}{2|\mathcal{K}|} \left(\omega_{-} \mathcal{K}^* q_U^2(-\infty) - \frac{1}{\omega_{-}} \mathcal{K} p_U^2(-\infty) \right)$$
$$-2iq_U(-\infty)p_U(-\infty) \sinh^2 |\mathcal{K}|$$

$$\mathcal{K} = \int_{-\infty}^{+\infty} d au rac{\dot{\omega}(au)}{2\omega(au)} \exp\left(-rac{2i}{arepsilon}\Theta(au)
ight) \qquad \Theta(au) = \int_{0}^{ au} \omega(au_{1})d au_{1}$$

- K also appears in the study of the above barrier 1-d scattering problem
- Asymptotic treatment of $\mathcal K$ assuming that $\omega(\tau)$ is analytic on a neighborhood of the real τ -axis and

$$\omega(\tau) = \omega_0(\tau - \tau_c)^{\nu/2} \left(1 + \sum_{j=1}^{\infty} \omega_j(\tau - \tau_c)^j \right), \quad \nu \in \mathbb{R}, \ \omega_0 \neq 0$$

in the vicinity of 'transition points' τ_c (roots, isolated singular points, branch points).

• If $\zeta_c = \Theta(\tau_c)$, Im $\zeta_c = -m$, then

$$\Delta J \simeq rac{i\pi
u}{
u+2}e^{-2m/arepsilon}(\omega_-\,arphi\,q_U^2(-\infty)+\omega_-^{-1}arphi^*p_U^2(-\infty))$$

where
$$\varphi = \exp((2i/\varepsilon) \operatorname{Re} \zeta_c)$$
.

• Wasow example: $\tau_c = -i\pi$, $\nu = 1$, $\mathrm{Im}\,\zeta_c = -\pi$, and

$$|\Delta J| \simeq P \, e^{-2\pi/arepsilon} + o(e^{-2\pi/arepsilon})$$

with
$$P \equiv \frac{\pi}{3} |\varphi q_U^2(-\infty) + \varphi^* p_U^2(-\infty)|$$

Prefactor $e^{2\pi/\varepsilon}|\Delta J|$ vs. ε

Prototypical problem (Two-level system)

$$i\frac{d\psi}{d\tau} = \frac{1}{\varepsilon}H(\tau)\psi,\tag{4}$$

and the Hamiltonian H is the real-symmetric 2×2 -matrix

$$H(au) = E(au) \left(egin{array}{cc} \cos heta(au) & \sin heta(au) \\ \sin heta(au) & -\cos heta(au) \end{array}
ight)$$

with eigenvalues $\pm E(\tau)$. Assume that

- $2E(\tau) \ge \text{const} > 0$ for all real τ
- $\theta(\tau)$ is asymptotically constant as $\tau \to \pm \infty$.

Two-level quantum system

In this case $S(\tau) = -iH(\tau)$,

$$\begin{array}{lcl} U_0(\tau) & = & \left(\begin{array}{cc} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & -\cos\frac{\theta}{2} \end{array} \right) = U_0^{-1}(\tau), \\ U_{\rm d}(\tau) & = & \left(\begin{array}{cc} {\rm e}^{-iw(\tau)/\varepsilon} & 0 \\ 0 & {\rm e}^{iw(\tau)/\varepsilon} \end{array} \right) \end{array}$$

with
$$w(\tau) \equiv \int_{\tau_0}^{\tau} E(\tau_1) d\tau_1$$

Convergence condition

$$\dot{U}_2 = S_2(\tau)U_2$$

$$S_2(au) = rac{\dot{ heta}}{2} \left(egin{array}{cc} 0 & -e^{2iw(au)/arepsilon} \ e^{-2iw(au)/arepsilon} & 0 \end{array}
ight)$$

so that

$$\int_0^\tau \|S_2(\tau_1)\|_2 d\tau_1 = \frac{1}{2} |\theta(\tau) - \theta(\tau_0)|$$

but $|\theta(\tau) - \theta(\tau_0)| < 2\pi$ always. Therefore, Magnus expansion is always convergent

Velocity of convergence?

General result (Moan, 2002)

$$\|\Omega_m\| \leq 2^{m-1} f_m \left(\int_{\tau_0}^{\tau} \|S_2(\tau_1)\| d\tau_1 \right)^m$$

with
$$f_1 = 1$$
, $f_2 = \frac{1}{4}$, $f_3 = \frac{5}{72}$, $f_4 = \frac{11}{576}$, etc.

• $f_{m+1}/f_m \approx 0.1$ (not very rapid)

Velocity of convergence?

General result (Moan, 2002)

$$\|\Omega_m\| \leq 2^{m-1} f_m \left(\int_{\tau_0}^{\tau} \|S_2(\tau_1)\| d\tau_1 \right)^m$$

with
$$f_1 = 1$$
, $f_2 = \frac{1}{4}$, $f_3 = \frac{5}{72}$, $f_4 = \frac{11}{576}$, etc.

• $f_{m+1}/f_m \approx 0.1$ (not very rapid)

Specific example

Spin 1/2 system in a rotating magnetic field that makes an angle α (constant) with the z axis with period of rotation $T=2\pi/\omega$.

- Here $\varepsilon = 1/T$
- Hamiltonian

$$H(\tau) = \frac{1}{2} \gamma \vec{B}(\tau) \cdot \vec{\sigma}$$

- γ : gyromagnetic ratio
- Magnetic field $\vec{B}(\tau) = B(\sin \alpha \cos 2\pi \tau, \sin \alpha \sin 2\pi \tau, \cos \alpha)$
- σ_i: Pauli matrices
- The exact solution is known

Spin 1/2 system

$$S_2(\tau) = i\pi \sin \alpha \begin{pmatrix} 0 & e^{-2i\beta\tau} \\ e^{2i\beta\tau} & 0 \end{pmatrix}$$

with $\beta = -\frac{\gamma B}{2\varepsilon} + \pi \cos \alpha$, and

$$\int_{\tau_0}^{\tau} \|S_2(\tau_1)\|_2 d\tau_1 = \pi |\sin \alpha| (\tau - \tau_0)$$

which is always $<\pi$, since $0 \le \tau - \tau_0 \le 1$.

Magnus expansion in the adiabatic picture is always convergent

Transition probability

- Transition between the two eigenstates of H that belong to spin projections $\pm 1/2$ along the rotating magnetic field $\vec{B}(\tau)$.
- The exact result P_{ex} is known.
- ullet $P_{\rm ex}$ vanishes in the adiabatic limit (no transition at all)
- We compare with the result achieved with the Magnus expansion
- It is very easy to compute any term $\Omega_k(\tau)$
- $P_{\rm M}(\tau) = |(U_2(\tau))_{21}|^2$
- Numerical experiments: $\alpha = 2\pi/3$, $\tau_0 = 0$, $\tau = 1$.

Transition probability

- We compute up to $\Omega_{11}(\tau)$ and the corresponding $P_{\rm M}(\tau)$ obtained with $\Omega^{[p]} = \sum_{i=1}^{p} \Omega_i$ up to p=11
- No contribution from Ω_{2i}
- Compare with the exact result
- Gauge the quality of the different approximations as a function of $\xi \equiv \gamma {\it B}/\varepsilon$

Exact transition probability vs. $\xi = \gamma B/\varepsilon$

Comparison Magnus – Exact result

p	Diff. ($\xi = 10$)	Diff. ($\xi = 20$)
1	-6.57×10^{-2}	1.77×10^{-2}
3	1.63×10^{-2}	1.43×10^{-3}
5	-2.52×10^{-3}	7.57×10^{-5}
7	5.87×10^{-4}	1.19×10^{-5}
9	-1.19×10^{-4}	-9.76×10^{-7}
11	$2.93 imes 10^{-5}$	1.31×10^{-7}

Error with p = 5 vs. $\xi = \gamma B/\varepsilon$

Remarks

- Velocity of convergence in Magnus consistent with theoretical estimates
- Very small errors for $\xi \ge 10$, even only with the first terms in the expansion
- Smaller errors with large ξ and more terms in Magnus
- Good description in the near-adiabatic regime

- Convergence of Magnus expansion assured in the adiabatic picture
- For the examples analyzed, the first terms in Magnus provide a good description in the near-adiabatic regime
- The approximation is expressed in terms of integrals
- In general, it will be difficult to compute exactly the integrals appearing in Ω_k , $k \ge 2$. So, what to do then?
- Integrand: highly oscillatory functions. Therefore, Filon quadratures are particularly suitable.
- This has already been formulated by Iserles & Nørsett, even for nested integrals

- Convergence of Magnus expansion assured in the adiabatic picture
- For the examples analyzed, the first terms in Magnus provide a good description in the near-adiabatic regime
- The approximation is expressed in terms of integrals
- In general, it will be difficult to compute exactly the integrals appearing in Ω_k , $k \ge 2$. So, what to do then?
- Integrand: highly oscillatory functions. Therefore, Filon quadratures are particularly suitable.
- This has already been formulated by Iserles & Nørsett, even for nested integrals

- Convergence of Magnus expansion assured in the adiabatic picture
- For the examples analyzed, the first terms in Magnus provide a good description in the near-adiabatic regime
- The approximation is expressed in terms of integrals
- In general, it will be difficult to compute exactly the integrals appearing in Ω_k , $k \ge 2$. So, what to do then?
- Integrand: highly oscillatory functions. Therefore, Filon quadratures are particularly suitable.
- This has already been formulated by Iserles & Nørsett, even for nested integrals

- Convergence of Magnus expansion assured in the adiabatic picture
- For the examples analyzed, the first terms in Magnus provide a good description in the near-adiabatic regime
- The approximation is expressed in terms of integrals
- In general, it will be difficult to compute exactly the integrals appearing in Ω_k , $k \ge 2$. So, what to do then?
- Integrand: highly oscillatory functions. Therefore, Filon quadratures are particularly suitable.
- This has already been formulated by Iserles & Nørsett, even for nested integrals

- Convergence of Magnus expansion assured in the adiabatic picture
- For the examples analyzed, the first terms in Magnus provide a good description in the near-adiabatic regime
- The approximation is expressed in terms of integrals
- In general, it will be difficult to compute exactly the integrals appearing in Ω_k , $k \ge 2$. So, what to do then?
- Integrand: highly oscillatory functions. Therefore, Filon quadratures are particularly suitable.
- This has already been formulated by Iserles & Nørsett, even for nested integrals

- Idea: either consider only one quadrature in the whole integration interval or divide the interval in a small number of subintervals and then apply Filon-like quadratures
- This approach should be competitive with other schemes (Jahnke et al.)
- Good results for (not so) small ε , and not only in the limit $\varepsilon \to 0$
- Work in progress...

- Idea: either consider only one quadrature in the whole integration interval or divide the interval in a small number of subintervals and then apply Filon-like quadratures
- This approach should be competitive with other schemes (Jahnke et al.)
- Good results for (not so) small ε , and not only in the limit $\varepsilon \to 0$
- Work in progress...

- Idea: either consider only one quadrature in the whole integration interval or divide the interval in a small number of subintervals and then apply Filon-like quadratures
- This approach should be competitive with other schemes (Jahnke et al.)
- Good results for (not so) small ε , and not only in the limit $\varepsilon \to 0$
- Work in progress...