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Introduction
Lie group integrators

(Cambridge-Trondheim-Bergen 1995 -> ... )

LGl generalizes classical integrators, based on the commutative action
of translations on R”

}’n+1 — Yn + (D(h’ Fuynu L) ')7

to methods based on Lie group actions on a manifold M

Yn+1:g(h»f,}’n,---)'yna gEG’yGM'

Common families of methods:
@ Methods based on commutators.
@ Commutator-free methods.
@ Magnus series methods.
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Introduction
Example: An oscillatory problem

Stermer developed an excellent symplectic integrator.
He ’ran’ his scheme on human compuers (students),
4500 CPU hours! Three steps per hour ...
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Introduction

Aurora example (cont.)

Equation of motion:

( y(t) )l _ ( v(t)vit)B(y) >, B(y) : magnetic field

Lie group action by freezing magnetic field (= helical motion):

< iéii > B < V(1) Vx(%(m )

Equations rewritten by action of GL(6) on R®.  f: M — gl(6)

() =(oeon )= (5 a5y) (1) =02
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Introduction

Stermers problem integrated with an LGl

Stepsize in LGl and RK-45.

stepsize

time

LGl is more efficient, since it can take 8-10 times longer steps with

same accuracy.
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Analysis of time integration methods

Questions:

@ Order theory. Taylor expansion of numerical solution and
analytical solution, = algebraic conditions on coefficients of
method by matching as many terms as possible.

@ Backward error analysis. What differential equation does the
numerical solution solve?

@ Geometric properties of the numerical integrator. Preservation of
first integrals? Preservation of symplecticity?

Tools for classical integrators: B-series, S-series
(J. Butcher, Hairer, Wanner, Murua, ++).

Tools for LGI: Generalization of B-series to non-commutative actions:
Lie-Butcher theory, LS-series

(MK, Owren-Marthinsen, Owren-Berland, MK-Krogstad, MK-Wright).
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Introduction

Tree-Expansions, brief history:

@ Trees, B-series: Cayley 1857, Merson 1957, Butcher 1963-1972,
Hairer-Wanner 1974.

@ Connections to Hopf. A. Dir 1986, Connes, Moscovici, Kreimer
1998, Brouder 2000, Murua 1999.

@ B-series and symplecticity: Sanz-Serna Abia (91), Hairer (93),
Calvo Sanz-Serna (94),..., Murua, Chartier Hairer Vilmart (05).

@ Lie-Butcher theory (1995-present): Extension of B-theory to
general non-commutative group actions on manifolds.
MK (95,98), Owren-Marthinsen (99), MK-Krogstad (03),
Owren-Berland (03), Owren (06), MK-Wright (07).

°® o

:
VY
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Introduction

B-series and symplecticity, backward error style:

Consider R2" with standard symplectic structure Q = 37, dp; A dg;
and let f be a symplectic vectorfield.

Theorem (CHV05)

An autonomous vectorfield g(y), defined by B-series

a) = Bib.y) =3 2D rinw)

TeT J(T)

is symplectic iff b(tyoto) 4+ b(m2074) = 0 for all 7,72 € T, where

YVol= \VI (Butcher product)

Example: coe + (3 — 5) + Cg(%.\:) — ;Y) - 03(§ - Vi + ;v)
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Symplectic LS series
Goals in development of symplectic LGls:

Let (P, Q) be a general Poisson manifold.
Let a Hamiltonian group action

~GxP—P
define Lie—Butcher LS-series on P.

Main Goals:
@ Characterize all LS-series representing (autonomous) symplectic
vectorfields on P.

@ Characterize all elementary Hamiltonian vectorfields.
© Construct symplectic Lie group integrators.

Today: (1) and (2), a’la Chartier Hairer Vilmart (05) (backward error).
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Symplectic LS series
Motivating examples

@ Classical case: P =R?", Q =Y dp; A dg;, G = R?" acting by
translation. (G is action of all linear Hamiltonians).

@ Quadratic hamiltonian action: P = R?", Q = 3" dp; A dg,
G = SP(2n) x R?" the action induced by all linear and quadratic
Hamiltonians.

© Lie-Poisson systems: G any Lie group with Lie algebra g, P = g*,
G acts by coadjoint action on P. Symplectic form:
Q(f,9)(y) = y([f(v), g(y)]) for vectorfields f,g: P — g and
yepP=g"
(Poisson bracket Q2 is linear in y).
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Symplectic LS series

Basic operations in Lie—Butcher theory [MK-Wright 07]

Given vectorfields f, g: P — g, written in terms of a rigid frame as

fly) = Zf Ei, 9(y)=>_ g(y)Ejwhere {E}; is abasis for g.
J

Basic operations:
@ Frozen concatenation, fg defined as:

(f9)(y) = f(y Zf(y 9(¥)EiEj € U(g).

@ Covariant derivation wrt. flat connection (absolute parallelism),
flg] defined as

flally Zf )Elg1E).
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Symplectic LS series

... basic operations

@ Torsion bracket, [f, g| defined as:
[f, 91(y) = [f(¥), 9¥)] = (fg — gh)(¥)-
@ Operator composition, fog defined as:
fog = fg + f[g].
@ Jacobi bracket [f, g],, defined as
[f,9ly = fog — gof = [f, g] + f[g] — glf].
Note:

(feg)[h] = f[g[h]] forany h: P — U(g).
[f.9] = [f.gly— flg] + glf],

thus [f, g] is the torsion of the (flat) absolute-parallelism-connection.
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Symplectic LS series
Basic operations on trees

All basic operations have nice geometric interpretations, and all of
these can be lifted to the algebra of LS series over trees and forests.
(Universal property of LS series).

@ Frozen concatenation < word concatenation:
.8 - VL.

@ Covariant derivation « Left grafting:
o

SUPRE SURN S,
eV e +teVWdTe¥is+te ¥ ¥ +e

ove] -t
Vi) =1¥

@ Operator composition <+ Grossman-Larson product
T10T2 = T4 T2 + T1[T2].
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Symplectic LS series
Main result

Result

Under the Symplectic Torsion Assumption, we can achieve our
goals (1) and (2), i.e. characterizing symplectic LS series and
elementary Hamiltonian vectorfields.

Symplectic Torsion Assumption (STA)

A hamiltonian vectorfield f satisfies STA if for all frozen vectorfields U
we have that also the torsion [U, f] = Uf — fU is symplectic.

Note: [U, f]y = [U, f] + U[f], thus STA implies U[f] symplectic.
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Symplectic LS series

Basic techniques for proving symplecticity

A vectorfield f is symplectic if d(:Q) = 0, where d is exterior derivation
and / inner product.

v

Lemma

Suppose that G acts transitively on the symplectic leaves of P. Then a
vectorfield f is symplectic iff

Q(U[f], V) = —-Q(U, V[f]) forall frozen U, V.

v

Proof

is based on Cartan Magic Formula +yda = Lya — diya, and the Jacobi
rule for symplectic vectorfields g, h, k:

Q([g, hly, k) + Q([h, K]y, 9) + Q([k, 9]y, h) = 0. (1)

V.
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Symplectic LS series

... proving symplecticity

Show that the LS series h = 25 Vg [o, I] is symplectic.

Evaluate Q(U[h], V) at y € P. Open nodes denote freezing at y.

U[2§] - 2U[§]+2U[2][o] + 2U]o][o][o]

U=V = —U¥] - 20Ul - Ullo,olle]

Ul-[e.d] = UIR,oll - Ule]llo, o] + U[[5,o]]
0 = QYT+ Ulo,ellfe] + Ulel[[o,e]], V) (Jacobi++).

QUIHL V) = QU, -2 V[%] +2V[o][8] — 2V/[o][o][e] — 2V[3][e]) +
QU, V[[$,]] + V[[%,e]) = QU, — V[H]).
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Symplectic LS series

Basic techniques for finding elementary Hamiltoinans

Definition
A vectorfield Xy is Hamiltonian if there exists a Hamiltonian function H
such that

1x,82 = dH.

Lemma
The Hamiltonian vectorfield Xy satisfies:

| \

U[H] = Q(Xy, U) for all frozen U.

Definition
Given a Hamiltonian H and a tree 7 = B (7 ... 7¢) there exists an
elementary Hamiltonian vectorfield X, = ®4(7) with the Hamiltonian

H=(r...7%)[H].

Cambridge, July 2007 17 /22
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Symplectic LS series

Computing (1)

We seek a vectorfield ¢ 4(7) satisfying

Ul(ry...7¢)[H]] = Q(®y(7),U) forall frozen U.

This is done by computing at an arbitrary point y € P, splitting in frozen
vectorfields and using the formula

fiQ(g, M1 = Q([h, 91, 1)

valid for any f and symplectic g, h.
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Symplectic LS series
Example:

Find (V).

Ul(ee)[H]] = Ulolc[H]]] + 2Ule][o[H]] + UJ[o, o]][H]
= U[c[Q(e,0)]] + 2UJe][2(e,0)] + (e, U[[o, o]])
—  U[Q([o, 0] + &, 0] +2Q([o, e] + &, U[e]) — Q(e[[o,s]], U)

— Q2,8 + ¥, U) - 29(?, U) — Q([o, 3], U)
— Qe+ ¥ - 25, U).

Thus o4(V) = e, 0] + ¥ - 25.
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Symplectic LS series

Some elementary Hamiltonian vectorfields

| ®u(r)

0
A V.l

v v,

3?_\V+[V,.]—[§,.]

We recover the classical ones for the commutative case. Note that
LS-series are normalized without the tree symmetry 1/0(7). Note that

vet eoed ondede]

g yields O classically and is non-zero in the general case.
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Symplectic LS series

On the Symplectic Torsion Assumption

@ The STA condition is not true in general. It is related to choice of
isotropy, in the representation of a vectorfield f as a function
f-P—g.

@ In the case of the quadratic Hamiltonian action on R?", STP is true
when

f(y) = (Fu(y), f(y)) € sp(2n) = R*",

where the matrix part Fy(y) is the Jacobian of f at y. Such
vectorfields can be understood as being horizontal on the principal
fiber bundle SP(2n) x R?" (with fibre SP(2n)).

@ In the case of Lie Poisson systems, the torsion [f, g] is vertical
(and thus symplectic) if f and g are horizontal (with respect to the
Levi-Civita connection V(g) = f[g] + 3[f. g]). This is the natural
choice of isotropy for f. However, the frozen vectorfields U are not
horizontal, so STA does not hold for [U, f].
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Concluding remarks
Concluding remarks

@ We are seeing the contours of a theory of symplectic Lie group
methods.

@ The theory seems to work for constant Q2 and careful choice of
isotropy.

@ There are still problems for non-constant Q2 (e.g. Lie Poisson).
Possible solutions seem to be related to differential geometry
(curvature and torsion).

@ The algebraic side of Lie Butcher theory has been understood
much more in the recent years, and is connecting both to classical
Butcher theory and to the free associative algebra.

@ Lie Butcher theory is now being tied closer also to mainstream
differential geometry.
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