Canonical representations for dependent Dirichlet populations.

D. Spanò

University of Oxford

(joint work with R.C. Griffiths, Oxford)

The two-type Wright-Fisher diffusion in Genetics.

Transition density: $\alpha > 0, \beta > 0$. For each $x, y \in [0, 1]$,

$$p_t^{(\alpha,\beta)}(x,y) \, dy = \pi_{\alpha,\beta}(y) \, dy \, \{1 + \sum_{n=1}^{\infty} \rho_n^{(\alpha+\beta)}(t) P_n^{(\alpha,\beta)}(x) P_n^{(\alpha,\beta)}(y) \}, \qquad t > 0.$$

- $\pi_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}\mathbb{I}(x \in (0,1))$: stationary distribution;
- $\{P_n^{(\alpha,\beta)}(x)\}$: Jacobi polynomials, orthonormal w.r.t. $\pi_{\alpha,\beta}$;
- $\bullet \ \rho_n^{\alpha+\beta}(t) = e^{-\frac{1}{2}tn(n+\alpha+\beta-1)}$

Generator:
$$AP_n^{(\alpha,\beta)}(x) = -\frac{1}{2}n(n+\alpha+\beta-1)P_n^{(\alpha,\beta)}(x).$$

A classical problem.

1. (Lancaster problem) Consider:

$$p^{(\alpha,\beta)}(x,y) dy = \pi_{\alpha,\beta}(y) dy \{1 + \sum_{n=1}^{\infty} a_n P_n^{(\alpha,\beta)}(x) P_n^{(\alpha,\beta)}(y) \}.$$

For which a_n is p(x, y) a density for every x? With $a_0 \equiv 1$, every such solution implies

$$a_n P_n^{(\alpha,\beta)}(x) = E(P_n^{(\alpha,\beta)}(Y) \mid x), \quad n \ge 1.$$

Regression for L_2 functions (Fourier expansion):

$$f(x) \sim \sum_{n=0}^{\infty} c_n P_n^{(\alpha,\beta)}(x) \implies E(f(Y) \mid x) \sim \sum_{n=0}^{\infty} \mathbf{a_n} c_n P_n^{(\alpha,\beta)}(x).$$

A classical problem.

2. (Bochner problem) Consider

$$p_t^{(\alpha,\beta)}(x,y) \ dy = \pi_{\alpha,\beta}(y) \ dy \ \{1 + \sum_{n=1}^{\infty} a_n(t) P_n^{(\alpha,\beta)}(x) P_n^{(\alpha,\beta)}(y)\} \qquad t > 0.$$

For which $a_n(t) = e^{-\Lambda_n t}$ is $p_t(x, y)$ the transition function of a Markov Process $X = (X_t : t \ge 0)$?

Every such solution implies

$$a_n(t)P_n^{(\alpha,\beta)}(x) = E(P_n^{(\alpha,\beta)}(X_t) \mid X_0 = x).$$

Semigroup for L_2 functions (Fourier expansion):

$$f(x) \sim \sum_{n=0}^{\infty} c_n P_n^{(\alpha,\beta)}(x) \Rightarrow P_t f(x) := E(f(X_t) \mid X_0 = x) \sim \sum_{n=0}^{\infty} a_n(t) c_n P_n^{(\alpha,\beta)}(x).$$

(Remember, generator: $Af = \frac{d}{dt}P_tf$).

A (less) classical problem.

3. Solve Lancaster (and Bochner) problem for Dirichlet measures on $d \le \infty$ points.

$$\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d_+, \ |\alpha| := \sum_{i=1}^d \alpha_i;$$

 $\pi_\alpha = \text{Dirichlet on } \Delta_{(d-1)} := \{x \in [0, 1]^{d-1} : |x| \le 1\}.$

$$p_t^{(\alpha,\beta)}(x,dy) = \pi_\alpha(dy) \left\{ 1 + \sum_{|n|=1}^{\infty} \sum_{m \in \mathbb{N}^d: |m|=|n|} \mathbf{a}_m(t) P_m^{(\alpha)}(x) P_m^{(\alpha)}(y) \right\} \qquad t > 0.$$

 $\{P_m(x)\}_{m\in\mathbb{N}^d}$ = multivariate *OP*'s w.r.t. π_α

(for $d = \infty$, $\alpha =$ measure on \mathbb{R} and $\pi_{\alpha} = PD(|\alpha|)$ or $GEM(|\alpha|)$ or $FD(\alpha)$).

Bochner (1954) answers to problems 1 and 2 for $\alpha = \beta > 1/2$. Gasper (1974) generalizes to $\alpha < \beta$ with $1/2 \le \alpha$ or $\alpha + \beta \ge 2$. No answer for more general α, β (only sufficient conditions)!!

(i) N+S condition for p(x,y) to be a conditional density $\forall x$ is that for some positive (σ -additive) measure H,

$$a_n = \int_0^1 R_n^{(\alpha,\beta)}(x)H(dx)$$

where $R_n^{(\alpha,\beta)}(x) := P_n^{(\alpha,\beta)}(x) / P_n^{(\alpha,\beta)}(1)$.

(ii) N+S condition for $p_t(x,y)$ to be a transition density is that $a_n = e^{-\frac{1}{2}\Lambda_n t}$ with

$$\Lambda_n = \sigma n(n + \alpha + \beta + 1) + \int_0^{1-0} \frac{1 - R_n^{\alpha, \beta}(x)}{1 - x} dH(x)$$

Key property for the proof for d = 2:

$$R_n^{(\alpha,\beta)}(x)R_n^{(\alpha,\beta)}(y) = \int_0^1 R_n^{(\alpha,\beta)}(z)m_{\alpha,\beta}(z)dz,$$

for a nonnegative measure $m_{\alpha,\beta} << \pi_{\alpha,\beta}$ (Koornwinder 1972, Gasper 1973).

This guarantees hypergroup structure hence convolution.

For d>2, Koornwinder and Schwartz (1991): Product formula for one choice of multivariate Jacobi $\{P_m^{\alpha}\}_{m\in\mathbb{N}^d}$, $(\alpha\in\mathbb{R}^d)$ with mixing measure m_{α} explicitly described. BUT:

- Multivariate OP are not unique!
- *K+S product formula does not give N+S conditions*;
- K+S product formula depends heavily on dimension d!!!

Polynomial kernels

Alternative approach for $d \ge 2$ (Griffiths and S, 2007): work with

$$Q_{|n|}^{\alpha}(x,y) = \sum_{|m|=|n|} P_m^{\alpha}(x) P_m^{\alpha}(y).$$

Fourier expansion analogue: $f(x) \sim \sum_{|n|} \mathbb{E}(f(Y)Q_{|n|}(x,Y))$.

- $Q_{|n|}^{\alpha}(x,y)$ unique!
- Lead to N+S condition for all $a_m = a_{|m|}$ for the positivity of

$$p(x, dy) = \pi_{\alpha}(dy) \{ 1 + \sum_{|n| \ge 1} a_{|m|} \sum_{|m| = |n|} Q_{|n|}^{\alpha}(x, y) \};$$

- Characterization independent of $d \to possible$ extension to $d = \infty$ (measure-valued processes);
- Explicit description leads to probabilistic interpretation (cf. Walker et al. 2006).

Polynomial kernels.

Proposition (Griffiths and S, 2007).

$$Q_{|n|}^{\alpha}(x,y) = (|\alpha| + 2|n| - 1) \sum_{|m|=0}^{|n|} (-1)^{|n|-m} \frac{(|\alpha| + m)_{(|n|-1)}}{m!(|n| - m)!} \xi_{|m|}^{\alpha}(x,y),$$

where

$$\xi_{|m|}^{\alpha}(x,y) = \sum_{|l|=|m|} {|m| \choose l} \frac{(|\alpha|)_{(|m|)}}{\prod_{1}^{d} (\alpha_{i})_{(l)}} \prod_{1}^{d} (x_{i}y_{i})^{l_{i}}$$

with $\binom{|m|}{l} = |m|!/(l_1! \cdots l_d!)$.

$$\Rightarrow \xi_{|m|}^{\alpha}(x,y)\pi_{\alpha}(dy) = \sum_{|l|=|m|} Mn(l|x)\pi_{\alpha+l}(dy) = \mathbb{E}\left(\pi_{\alpha+L}(dy) \mid X=x, |L|=|m|\right)$$

 \rightarrow Walker and Muliere (2003) Bivariate DP as $d \rightarrow \infty$.

Product formula and Lancaster problem.

Remember: $R_{|n|}^{(\alpha,\beta)}(x)R_{|n|}^{(\alpha,\beta)}(y) = \int_0^1 R_{|n|}^{(\alpha,\beta)}(z)m_{\alpha,\beta}(z)dz$.

Proposition (Griffiths and S, 2007). For every $d \ge 2$, let $\alpha \in \mathbb{R}^d_+$ be such that, for every $j = 1, \ldots, d$, $\alpha_j \le \sum_{i=1}^{j-1} \alpha_i$ and $1/2 \le \alpha_j$, or $\sum_{i=1}^{j} \alpha_i \ge 2$.

$$Q_{|n|}^{\alpha}(x,y) = h_{|n|}^{\alpha_d,|\alpha|-\alpha_d} \int R_{|n|}^{\alpha_d,|\alpha|-\alpha_d}(z) m_{x,y;\alpha}(dz)$$

for some positive measure $m_{x,y,\alpha}$ on [0,1] ($h_{|n|}^{(\alpha,\beta)}$ normaliz. constant).

Corollary. Same constraints on α . A sequence $\{a_{|n|} : |n| \in \mathbb{N}\}$ solve Lancaster's problem for the Dirichlet (α) distribution if and only if, for at least a subset I of $\{1, \ldots, d\}$, $a_{|n|}$ is a solution for the Beta $(\alpha_I, |\alpha| - \alpha_I)$ distribution, where

$$\alpha_I := \sum_{j \in I} \alpha_j.$$

Bivariate Dirichlet measures.

Remark 1. Extension to $d \to \infty$ possible for GEM, PD, FD process with total mass $\theta > 2$.

Remark 2. Bayesian interpretation:

$$p(x, dy) = \sum_{\substack{|n|=0}}^{\infty} a_{|n|} Q_{|n|}^{\alpha}(x, y) \pi_{\alpha}(dy)$$

$$= \sum_{\substack{|m|=0}}^{\infty} \mathbb{P}(|L| = |m|) \mathbb{E} \left(\pi_{\alpha+L}(dy) \mid X = x, |L| = |m| \right)$$

where

$$\mathbb{P}\left(|L| = |m|\right) \propto \int_0^1 \sum_{|l|=0}^\infty \frac{(|\alpha|+2|l+m|-1)(|\alpha|+2|m|)_{(|l|)}(-1)^{|l|}}{|l|!} R_{|m+l|}^{(\alpha_d,|\alpha|-\alpha_d)}(z) H(dz).$$

for some positive measure H.

Remark 3. For $d \to \infty$ solution to Bochner's problem (suitable H_t) satisfies conditions of Walker *et al.* (2006) !!!

Dirichlet measure-valued Markov processes.

$$\mathbb{P}(|L_t| = |m|) \propto \sum_{|l|=0}^{\infty} \frac{(|\alpha| + 2|l + m| - 1)(|\alpha| + 2|m|)_{(|l|)}(-1)^{|l|}}{|l|!} e^{-t\Lambda_{|m|}}.$$

$$\Lambda_{|m|} = \sigma|m|(|m| + |\alpha| - 1) - \int_0^{1^-} \frac{1 - R_{|m|}^{(\alpha_d, |\alpha| - \alpha_d)}(z)}{1 - z} H(dz)$$

Examples:

- 1. $\Lambda_{|m|} = 2^{-1}|m|(|m| + |\alpha| 1)$: Kingman's binary coalescent.
- 2. $\Lambda_{|m|}^* = |m|$: coalescent with simultaneous binary collisions.

Proposition. (Griffiths and S. 2007).

$$(X_{\Lambda^*}(t): t \ge 0) = (X_{\Lambda}(Z_t): t \ge 0)$$

for a stable subordinator $(Z_t : t : t \ge 0)$, independent of $(X_{\Lambda}(t) : t \ge 0)$.

The d-type Moran B&D process in Genetics.

Countable representation for Wright-Fisher diffusion.

Transition density: $\alpha \in \mathbb{R}^d$. For every $m, r \in \mathbb{N}^d : |m| = |r|$,

$$q_t^{(\alpha,|n|)}(m,r) = M_{(\alpha,\beta,|r|)}(r) \left\{ 1 + \sum_{|n|=1}^{\infty} \rho_{|n|}^{|\alpha|}(t) h_n^{(\alpha,|r|)}(m) h_n^{(\alpha,|r|)}(r) \right\}.$$

•
$$M_{(\alpha,|r|)}(r) = \int_{\Delta_{(d-1)}} {r \choose r} x^r \pi_{\alpha}(dx) = {r \choose r} \frac{\prod_{i=1}^d (\alpha_i)_{(r_i)}}{(|\alpha|)_{(|r|)}};$$

- $h_{|n|}^{(\alpha,|m|)}(r)$: Multivariate Hahn polynomials, Karlin-McGregor (1978);
- $\rho_{|n|}^{\alpha+\beta}(t)=e^{-\frac{1}{2}t|n|(|n|+\alpha+\beta-1)}$ same as Wright-Fisher diffusion.

Solving Lancaster/Bochner problem for $M_{(\alpha,|r|)}$.

Proposition. (Griffiths and S. 2007)

(i) Multivariate Hahn (non-unique) are given by:

$$h_n^{(\alpha,|m|)}(r) = \int_{\Delta_{(d-1)}} P_n^{\alpha}(x) \pi_{\alpha+r}(dx)$$

where $P^{\alpha}_{|n|}$ are multivariate Jacobi.

(ii) Polynomial kernel in $M_{(\alpha,|r|)}$ uniquely determined by

$$k_n^{(\alpha,|m|)}(m,r) = \int_{\Delta_{(d-1)}^2} Q_{|n|}^{\alpha}(x,y) \pi_{\alpha+m}(dx) \pi_{\alpha+r}(dy).$$

Corollary. $M_{(\alpha,|r|)}$ and π_{α} share the same set of solution for Bochner/Lancaster's problem.

Current & future directions.

- Study tree-structure for other eigenvalues.
- Characterize general positive-definite multivariate sequences (extend Koornwinder's product formula).
- Kernel for Pitman-Yor, Beta-Stacy, NTR, NTL distributions and their sampling formulae.

Bonus: Kernel for Poisson-Dirichlet point process.

n-Kernel polynomials on the d unlabelled points ordered by size $X_{(1)} > X_{(2)} > \cdots > X_{(d)}$ are

$$Q_{|n|}^* = (d!)^{-1} \sum_{\pi} Q_{|n|}(\pi(x), y),$$

where $\pi(x) = (x_{\pi(1)}, \dots, x_{\pi(d)})$. Take limit as $d \to \infty$. Same structure:

$$Q_{|n|}^{*\infty} = \sum_{|m| \le |n|} a_{|n||m|} \xi_{|m|}^{*\infty}$$

where

$$\xi_{|m|}^{*\infty}(x,y) = |\epsilon|_{(m)} \sum \frac{m!\alpha(1)!\cdots\alpha(k)![x;\alpha][y;\alpha]}{|\epsilon|^k[0!1!]^{\alpha(1)}\cdots[(k-1)!k!]^{\alpha(k)}}$$

and

$$[x; \alpha] = \sum x_{(i_1)}^{l_1} \cdots x_{(i_k)}^{l_k}.$$

Bonus 2: Orthogonal polynomials in the GEM distribution.

For $d < \infty, \alpha > 0$, let $\pi_{\alpha,d}$ denote Dirichlet $(\alpha, \alpha, \dots, \alpha)$: Increments

$$B_j = \frac{X_j}{1 - \sum_{i=1}^{j-1} X_i}, \qquad j = 1, \dots, d-1$$

are independent Beta $(\alpha, (d-j)\alpha)$, respectively.

OP's are of the form:

$$R_n^{\alpha}(x) = \prod_{j=1}^{d-1} \left[R_{n_j}^{\alpha,(d-j)\alpha+2N_j}(B_j) \right] (1 - B_j)^{N_j}$$

where $N_j = n_{j+1} + \ldots + n_{d-1}$.

Size-biased permutation

$$SBP\pi_{\alpha,d}(\sigma x)dx = \prod_{j=1}^{d} \frac{X_{\sigma(j)}}{1 - \sum_{i=1}^{j-1} X_{\sigma(i)}} \pi_{\alpha,d}(x)dx$$

The new increments B_j^{SBP} are now independent Beta $(1+\alpha,(d-j)\alpha)$. Same structure for OP!! Let $d\to\infty$ while $d\alpha\to\theta$. The limit is $GEM(\theta)$.