Real Zeros of Chromatic and Flow Polynomials

Bill Jackson School of Mathematical Sciences Queen Mary London England

Newton Institute, 21 January 2008

Real Zeros of Chromatic and Flow Polynomials

• Chromatic Polynomials of Graphs

- Arbitrary Graphs
- Planar Graphs
- Planar Triangulations
- Graphs of Bounded Maximum Degree
- Flow Polynomials of Graphs
 - Arbitrary Graphs
 - Cubic Graphs
 - Graphs of Bounded Diameter

(D) (A) (A) (A) (A)

Theorem

Let G be a loopless graph with n vertices, c components, and b blocks which are not isolated vertices. Then:

- $P_G(t)$ is non-zero with sign $(-1)^n$ for $t \in (-\infty, 0)$;
- $P_G(t)$ has a zero of multiplicity c at t = 0;
- $P_G(t)$ is non-zero with sign $(-1)^{n+c}$ for $t \in (0,1)$;
- $P_G(t)$ has a zero of multiplicity b at t = 1, (Woodall);
- $P_G(t)$ is non-zero with sign $(-1)^{n+c+b}$ for $t \in (1, \frac{32}{27}] \approx (1, 1.185].$

Theorem

Let G be a loopless graph with n vertices, c components, and b blocks which are not isolated vertices. Then:

- $P_G(t)$ is non-zero with sign $(-1)^n$ for $t \in (-\infty, 0)$;
- $P_G(t)$ has a zero of multiplicity c at t = 0;
- $P_G(t)$ is non-zero with sign $(-1)^{n+c}$ for $t \in (0,1)$;
- $P_G(t)$ has a zero of multiplicity b at t = 1, (Woodall);
- $P_G(t)$ is non-zero with sign $(-1)^{n+c+b}$ for $t \in (1, \frac{32}{27}] \approx (1, 1.185].$

Theorem (Thomassen)

The real chromatic roots of graphs are dense everywhere in $\left[\frac{32}{27},\infty\right)$.

イロン イヨン イヨン イヨン

Chromatic Polynomials: 3-Connected Graphs

Conjecture

- If G is a loopless 3-connected graph, then G has no chromatic roots in (1, α) where α ≈ 1.781 is the chromatic root of K_{3,4}.
- For all ε > 0, there are only finitely many 3-connected cubic graphs with a chromatic root in (1, 2 − ε).

Chromatic Polynomials: Planar Graphs

Theorem

If G is a loopless planar graph, then $P_G(t) > 0$ for $t \in [5, \infty)$, (Birkhoff and Lewis).

Theorem

The real chromatic roots of planar graphs are dense everywhere in $\left[\frac{32}{27},3\right]$. (Thomassen)

Chromatic Polynomials: Planar Graphs

Theorem

If G is a loopless planar graph, then $P_G(t) > 0$ for $t \in [5, \infty)$, (Birkhoff and Lewis).

Theorem

The real chromatic roots of planar graphs are dense everywhere in $\left[\frac{32}{27},3\right]$. (Thomassen)

Conjecture

If G is a loopless planar graph, then $P_G(t) > 0$ for $t \in [4, \infty)$, (Birkhoff and Lewis).

Conjecture

The real chromatic roots of planar graphs are dense everywhere in $\left[\frac{32}{27},4\right]$. (Thomassen)

A **near triangulation** is a plane graph with at most one face of size other than three.

Theorem

Let G be a 3-connected plane near triangulation with n vertices. Then

- $P_G(t)$ is non-zero with sign $(-1)^n$ for $t \in (1, 2)$, (Birkhoff and Lewis);
- $P_G(t)$ has a simple zero at t = 2, (Woodall);
- If G is a triangulation then $P_G(t)$ is non-zero with sign $(-1)^{n+1}$ for $t \in (2, \delta)$, where $\delta \approx 2.546$ is the chromatic root of the octahedron in (2,3), (Woodall).

Conjecture (Woodall)

- If G is a 4-connected plane triangulation then $P_G(t)$ has at most one zero in $(2, \tau^2)$, where $\tau = \frac{1+\sqrt{5}}{2}$ and $\tau^2 \approx 2.6180$.
- For all ε > 0, there exist only finitely many 4-connected plane triangulations with a chromatic root in (2, τ² − ε).

・ロン ・回 と ・ヨン ・ヨン

Chromatic Polynomials: Graphs of Bounded Maximum Degree

Theorem (Sokal)

Let G be a loopless graph of maximum degree Δ . Then $P(G, z) \neq 0$ for all complex z with $|z| \ge C\Delta$, where $C \approx 7.9639$.

(D) (A) (A)

Chromatic Polynomials: Graphs of Bounded Maximum Degree

Theorem (Sokal)

Let G be a loopless graph of maximum degree Δ . Then $P(G, z) \neq 0$ for all complex z with $|z| \ge C\Delta$, where $C \approx 7.9639$.

Conjecture (Sokal)

Let G be a loopless graph of maximum degree Δ . Then P(G, t) > 0 for all $t > \Delta$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Chromatic Polynomials: Graphs of Bounded Maximum Degree

Theorem (Sokal)

Let G be a loopless graph of maximum degree Δ . Then $P(G, z) \neq 0$ for all complex z with $|z| \ge C\Delta$, where $C \approx 7.9639$.

Conjecture (Sokal)

Let G be a loopless graph of maximum degree Δ . Then P(G, t) > 0 for all $t > \Delta$.

Theorem (Thomassen, Woodall)

Let G be a graph. Suppose that every simple minor of G has a vertex of degree at most d. Then P(G, t) > 0 for all t > d.

・ロン ・回 と ・ ヨ と ・ ヨ と

Let t be a positive integer and G be a graph.

Construct a digraph \vec{G} by giving the edges of G an arbitrary orientation.

A nowhere-zero \mathbb{Z}_t -flow of G (with respect to \vec{G}) is an assignment of flow values 1, 2, 3, t - 1 to the arcs of \vec{G} such that the total flow entering each vertex is congruent to the total flow leaving each vertex, modulo t.

Conjecture (Tutte)

Let G be a bridgeless graph.

- G has a nowhere zero 5-flow.
- If G has no edge-cuts of size three then G has a nowhere zero 3-flow.

(D) (A) (A) (A) (A)

Conjecture (Tutte)

Let G be a bridgeless graph.

- G has a nowhere zero 5-flow.
- If G has no edge-cuts of size three then G has a nowhere zero 3-flow.

Theorem

Let G be a bridgeless graph.

- *G* has a nowhere zero 6-flow. (Seymour)
- If G has no edge-cuts of size three then G has a nowhere zero 4-flow. (Jaeger)

Let G = (V, E) be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t -flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Let G = (V, E) be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t -flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Contraction-Deletion Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$

Let G = (V, E) be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t -flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Contraction-Deletion Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$

This implies that $F_G(t)$ is a polynomial in t, the **flow polynomial** of G.

・ロン ・回 と ・ ヨ と ・

Let G = (V, E) be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t -flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Contraction-Deletion Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$

This implies that $F_G(t)$ is a polynomial in t, the **flow polynomial** of G.

Lemma (Tutte)

If G is a connected plane graph and G^* is its planar dual then

$$F_G(t) = t^{-1} P_{G^*}(t).$$

イロト イポト イヨト イヨト

Theorem (Wakelin)

Let G be a bridgeless graph with n vertices, m edges, b blocks, and no isolated vertices. Then:

- $F_G(t)$ is non-zero with sign $(-1)^{m-n+1}$ for $t \in (-\infty, 1)$;
- $F_G(t)$ has a zero of multiplicity b at t = 1;
- $F_G(t)$ is non-zero with sign $(-1)^{m-n+b+1}$ for $t \in (1, \frac{32}{27}] \approx (1, 1.185].$

Theorem (Wakelin)

Let G be a bridgeless graph with n vertices, m edges, b blocks, and no isolated vertices. Then:

- $F_G(t)$ is non-zero with sign $(-1)^{m-n+1}$ for $t \in (-\infty, 1)$;
- $F_G(t)$ has a zero of multiplicity b at t = 1;
- $F_G(t)$ is non-zero with sign $(-1)^{m-n+b+1}$ for $t \in (1, \frac{32}{27}] \approx (1, 1.185].$

Edwards, Hierons and BJ subsequently obtained a common extension of both this theorem, and the analogous theorem for chromatic polynomials, to matroids.

Theorem (Wakelin)

Let G be a bridgeless graph with n vertices, m edges, b blocks, and no isolated vertices. Then:

- $F_G(t)$ is non-zero with sign $(-1)^{m-n+1}$ for $t \in (-\infty, 1)$;
- $F_G(t)$ has a zero of multiplicity b at t = 1;
- $F_G(t)$ is non-zero with sign $(-1)^{m-n+b+1}$ for $t \in (1, \frac{32}{27}] \approx (1, 1.185].$

Edwards, Hierons and BJ subsequently obtained a common extension of both this theorem, and the analogous theorem for chromatic polynomials, to matroids.

Theorem (Thomassen)

The real flow roots of graphs are dense everywhere in $\left[\frac{32}{27},3\right)$.

(ロ) (同) (E) (E) (E)

Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in $\left[\frac{32}{27}, 4\right]$.

Conjecture (Welsh)

If G is a bridgeless graph, then $F_G(t) > 0$ for all t > 4.

・ロン ・ロン ・ヨン ・ヨン

Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in $\left[\frac{32}{27}, 4\right]$.

Conjecture (Welsh)

If G is a bridgeless graph, then $F_G(t) > 0$ for all t > 4.

Theorem

Let G be a bridgeless graph. If every every 3-edge-connected minor of G has a cycle of length at most d, then $F_G(t) > 0$ for all t > d.

Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in $\left[\frac{32}{27}, 4\right]$.

Conjecture (Welsh)

If G is a bridgeless graph, then $F_G(t) > 0$ for all t > 4.

Theorem

Let G be a bridgeless graph. If every every 3-edge-connected minor of G has a cycle of length at most d, then $F_G(t) > 0$ for all t > d.

Corollary

Let G be a bridgeless graph with n vertices. Then $F_G(t) > 0$ for all $t > 2 \log_2 n$.

イロト イポト イヨト イヨト

A graph G is **near cubic** if it has at most one vertex of degree other than three.

Theorem

Let G be a 3-connected near cubic with n vertices and m edges. Then:

- $F_G(t)$ is non-zero with sign $(-1)^{m-n}$ for $t \in (1,2)$;
- $F_G(t)$ has a simple zero at t = 2;
- $F_G(t)$ is non-zero with sign $(-1)^{m-n+1}$ for $t \in (2, \rho]$, where $\gamma \approx 2.225$ is the root of $t^4 8t^3 + 22t^2 28t + 17$ in (2, 3);
- If G is cubic then $F_G(t)$ has no zeros in $(2, \delta]$, where $\delta \approx 2.546$ is the flow root of the cube in (2, 3).

Conjecture

- If G is a cyclically-4-connected cubic graph then $F_G(t)$ has at most one zero in $(2, \tau^2)$, where $\tau = \frac{1+\sqrt{5}}{2}$ and $\tau^2 \approx 2.6180$.
- For all ε > 0, there exist only finitely many cyclically
 4-connected cubic graphs with a flow root in (2, τ² ε).

Flow Polynomials: Graphs of Bounded Diameter

Let G = (V, E) be a graph and $Z \subset E$. Then Z is a \mathbb{Z}_2 -cycle of G if each vertex of G is incident to an even number of edges of Z. The set of \mathbb{Z}_2 -cycles of G is closed under symmetric difference and hence forms a vector space over \mathbb{Z}_2 , the cycle space, $\mathcal{Z}(G)$, of G. For each basis B of $\mathcal{Z}(G)$, let $\Lambda(B)$ be the maximum size of a \mathbb{Z}_2 -cycle in B. Let $\Lambda(G)$ be the minimum of $\Lambda(B)$ over all bases B for $\mathcal{Z}(G)$.

Flow Polynomials: Graphs of Bounded Diameter

Let G = (V, E) be a graph and $Z \subset E$. Then Z is a \mathbb{Z}_2 -cycle of G if each vertex of G is incident to an even number of edges of Z. The set of \mathbb{Z}_2 -cycles of G is closed under symmetric difference and hence forms a vector space over \mathbb{Z}_2 , the cycle space, $\mathcal{Z}(G)$, of G. For each basis B of $\mathcal{Z}(G)$, let $\Lambda(B)$ be the maximum size of a \mathbb{Z}_2 -cycle in B. Let $\Lambda(G)$ be the minimum of $\Lambda(B)$ over all bases B for $\mathcal{Z}(G)$.

Conjecture (Sokal and BJ)

There exists a constant c > 0 such that, for all bridgeless graphs G, and all complex z with $|z| > c\Lambda(G)$, we have $F_G(z) \neq 0$.

Flow Polynomials: Graphs of Bounded Diameter

Let G = (V, E) be a graph and $Z \subset E$. Then Z is a \mathbb{Z}_2 -cycle of G if each vertex of G is incident to an even number of edges of Z. The set of \mathbb{Z}_2 -cycles of G is closed under symmetric difference and hence forms a vector space over \mathbb{Z}_2 , the cycle space, $\mathcal{Z}(G)$, of G. For each basis B of $\mathcal{Z}(G)$, let $\Lambda(B)$ be the maximum size of a \mathbb{Z}_2 -cycle in B. Let $\Lambda(G)$ be the minimum of $\Lambda(B)$ over all bases B for $\mathcal{Z}(G)$.

Conjecture (Sokal and BJ)

There exists a constant c > 0 such that, for all bridgeless graphs G, and all complex z with $|z| > c\Lambda(G)$, we have $F_G(z) \neq 0$.

Conjecture (Sokal and BJ)

There exists a constant c > 0 such that, for all bridgeless graphs G of diameter D, and all complex z with |z| > cD, we have $F_G(z) \neq 0$.

The Multivariate Tutte Polynomial

The **multivariate Tutte polynomial** of a graph G = (V, E) is the (|E| + 1)-variable polynomial given by

$$Z_G(q, \mathbf{w}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} w_e,$$

where $\mathbf{w} = (w_e)_{e \in E}$ is a vector of indeterminates. We have $P_G(q) = Z_G(q, -1)$.

The Multivariate Tutte Polynomial

The **multivariate Tutte polynomial** of a graph G = (V, E) is the (|E| + 1)-variable polynomial given by

$$Z_G(q, \mathbf{w}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} w_e,$$

where $\mathbf{w} = (w_e)_{e \in E}$ is a vector of indeterminates. We have $P_G(q) = Z_G(q, -1)$.

Theorem (Sokal and BJ)

Suppose G = (V, E) is a loopless 2-connected graph and $q \in (1, 32/27]$. Let w_{\diamond} be the root of $w^3 - 2wq - q^2$ which lies in (-1, 0). Put

$$L_q = \begin{cases} (-q - \sqrt{q^2 - q}, -q + \sqrt{q^2 - q}) & \text{if } q \in (1, 9/8] \\ (q/w_\diamond, w_\diamond) & \text{if } q \in (9/8, 32/27] \end{cases}$$

If $w_e \in L_q$ for all $e \in E$, then $(-1)^{|V|}Z_G(q, \mathbf{w}) > 0$.

The Interval L_q for 1 < q < 32/27

・ロン ・回 と ・ ヨン ・ ヨン

The Interval L_q for q < 32/27

