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Chromatic Polynomials: Arbitrary Graphs

Theorem

Let G be a loopless graph with n vertices, c components, and b
blocks which are not isolated vertices. Then:

PG (t) is non-zero with sign (−1)n for t ∈ (−∞, 0);

PG (t) has a zero of multiplicity c at t = 0;

PG (t) is non-zero with sign (−1)n+c for t ∈ (0, 1);

PG (t) has a zero of multiplicity b at t = 1, (Woodall);

PG (t) is non-zero with sign (−1)n+c+b for
t ∈ (1, 32

27 ] ≈ (1, 1.185].

Theorem (Thomassen)

The real chromatic roots of graphs are dense everywhere in
[32
27 ,∞).
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Chromatic Polynomials: 3-Connected Graphs

Conjecture

If G is a loopless 3-connected graph, then G has no chromatic
roots in (1, α) where α ≈ 1.781 is the chromatic root of K3,4.

For all ε > 0, there are only finitely many 3-connected cubic
graphs with a chromatic root in (1, 2− ε).
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Chromatic Polynomials: Planar Graphs

Theorem

If G is a loopless planar graph, then PG (t) > 0 for t ∈ [5,∞),
(Birkhoff and Lewis).

Theorem

The real chromatic roots of planar graphs are dense everywhere in
[32
27 , 3]. (Thomassen)

Conjecture

If G is a loopless planar graph, then PG (t) > 0 for t ∈ [4,∞),
(Birkhoff and Lewis).

Conjecture

The real chromatic roots of planar graphs are dense everywhere in
[32
27 , 4]. (Thomassen)
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Chromatic Polynomials: Plane (Near) Triangulations

A near triangulation is a plane graph with at most one face of
size other than three.

Theorem

Let G be a 3-connected plane near triangulation with n vertices.
Then

PG (t) is non-zero with sign (−1)n for t ∈ (1, 2), (Birkhoff and
Lewis);

PG (t) has a simple zero at t = 2, (Woodall);

If G is a triangulation then PG (t) is non-zero with sign
(−1)n+1 for t ∈ (2, δ), where δ ≈ 2.546 is the chromatic root
of the octahedron in (2, 3), (Woodall).
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Chromatic Polynomials: Plane Triangulations

Conjecture (Woodall)

If G is a 4-connected plane triangulation then PG (t) has at

most one zero in (2, τ2), where τ = 1+
√

5
2 and τ2 ≈ 2.6180.

For all ε > 0, there exist only finitely many 4-connected plane
triangulations with a chromatic root in (2, τ2 − ε).
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Chromatic Polynomials: Graphs of Bounded Maximum
Degree

Theorem (Sokal)

Let G be a loopless graph of maximum degree ∆. Then
P(G , z) 6= 0 for all complex z with |z | ≥ C∆, where C ≈ 7.9639.

Conjecture (Sokal)

Let G be a loopless graph of maximum degree ∆. Then
P(G , t) > 0 for all t > ∆.

Theorem (Thomassen, Woodall)

Let G be a graph. Suppose that every simple minor of G has a
vertex of degree at most d . Then P(G , t) > 0 for all t > d .
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Nowhere-zero Flows

Let t be a positive integer and G be a graph.

Construct a digraph ~G by giving the edges of G an arbitrary
orientation.

A nowhere-zero Zt-flow of G (with respect to ~G ) is an
assignment of flow values 1, 2, 3, t − 1 to the arcs of ~G such that
the total flow entering each vertex is congruent to the total flow
leaving each vertex, modulo t.
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Tutte’s Conjectures and the Jaeger-Seymour Theorems

Conjecture (Tutte)

Let G be a bridgeless graph.

G has a nowhere zero 5-flow.

If G has no edge-cuts of size three then G has a nowhere zero
3-flow.

Theorem

Let G be a bridgeless graph.

G has a nowhere zero 6-flow. (Seymour)

If G has no edge-cuts of size three then G has a nowhere zero
4-flow. (Jaeger)
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The Flow Polynomial

Let G = (V ,E ) be a graph. For each positive integer t, let FG (t)
be the number of nowhere-zero Zt-flows of G . (By definition
FG (t) ≡ 1 if E = ∅.)

Contraction-Deletion Lemma

Let G be a graph and e be an edge of G which is not a bridge.
Then

FG (t) = FG/e(t)− FG−e(t).

This implies that FG (t) is a polynomial in t, the flow polynomial
of G .

Lemma (Tutte)

If G is a connected plane graph and G ∗ is its planar dual then

FG (t) = t−1PG∗(t).
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Flow Polynomials: Arbitrary Graphs

Theorem (Wakelin)

Let G be a bridgeless graph with n vertices, m edges, b blocks,
and no isolated vertices. Then:

FG (t) is non-zero with sign (−1)m−n+1 for t ∈ (−∞, 1);

FG (t) has a zero of multiplicity b at t = 1;

FG (t) is non-zero with sign (−1)m−n+b+1 for
t ∈ (1, 32

27 ] ≈ (1, 1.185].

Edwards, Hierons and BJ subsequently obtained a common
extension of both this theorem, and the analogous theorem for
chromatic polynomials, to matroids.

Theorem (Thomassen)

The real flow roots of graphs are dense everywhere in [3227 , 3).
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Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in [3227 , 4].

Conjecture (Welsh)

If G is a bridgeless graph, then FG (t) > 0 for all t > 4.

Theorem

Let G be a bridgeless graph. If every every 3-edge-connected minor
of G has a cycle of length at most d , then FG (t) > 0 for all t > d .

Corollary

Let G be a bridgeless graph with n vertices. Then FG (t) > 0 for
all t > 2 log2 n.

Bill Jackson Real Zeros of Chromatic and Flow Polynomials



Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in [3227 , 4].

Conjecture (Welsh)

If G is a bridgeless graph, then FG (t) > 0 for all t > 4.

Theorem

Let G be a bridgeless graph. If every every 3-edge-connected minor
of G has a cycle of length at most d , then FG (t) > 0 for all t > d .

Corollary

Let G be a bridgeless graph with n vertices. Then FG (t) > 0 for
all t > 2 log2 n.

Bill Jackson Real Zeros of Chromatic and Flow Polynomials



Flow Polynomials: Arbitrary Graphs

Conjecture (Thomassen)

The flow roots of graphs are dense in [3227 , 4].

Conjecture (Welsh)

If G is a bridgeless graph, then FG (t) > 0 for all t > 4.

Theorem

Let G be a bridgeless graph. If every every 3-edge-connected minor
of G has a cycle of length at most d , then FG (t) > 0 for all t > d .

Corollary

Let G be a bridgeless graph with n vertices. Then FG (t) > 0 for
all t > 2 log2 n.

Bill Jackson Real Zeros of Chromatic and Flow Polynomials



Flow Polynomials: (Near) Cubic Graphs

A graph G is near cubic if it has at most one vertex of degree
other than three.

Theorem

Let G be a 3-connected near cubic with n vertices and m edges.
Then:

FG (t) is non-zero with sign (−1)m−n for t ∈ (1, 2);

FG (t) has a simple zero at t = 2;

FG (t) is non-zero with sign (−1)m−n+1 for t ∈ (2, ρ], where
γ ≈ 2.225 is the root of t4 − 8t3 + 22t2 − 28t + 17 in (2, 3);

If G is cubic then FG (t) has no zeros in (2, δ], where
δ ≈ 2.546 is the flow root of the cube in (2, 3).
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Flow Polynomials: Cubic Graphs

Conjecture

If G is a cyclically-4-connected cubic graph then FG (t) has at

most one zero in (2, τ2), where τ = 1+
√

5
2 and τ2 ≈ 2.6180.

For all ε > 0, there exist only finitely many cyclically
4-connected cubic graphs with a flow root in (2, τ2 − ε).
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Flow Polynomials: Graphs of Bounded Diameter

Let G = (V ,E ) be a graph and Z ⊂ E . Then Z is a Z2-cycle of
G if each vertex of G is incident to an even number of edges of Z .
The set of Z2-cycles of G is closed under symmetric difference and
hence forms a vector space over Z2, the cycle space, Z(G ), of G .
For each basis B of Z(G ), let Λ(B) be the maximum size of a
Z2-cycle in B. Let Λ(G ) be the minimum of Λ(B) over all bases B
for Z(G ).

Conjecture (Sokal and BJ)

There exists a constant c > 0 such that, for all bridgeless graphs
G , and all complex z with |z | > cΛ(G ), we have FG (z) 6= 0.

Conjecture (Sokal and BJ)

There exists a constant c > 0 such that, for all bridgeless graphs G
of diameter D, and all complex z with |z | > cD, we have
FG (z) 6= 0.
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The Multivariate Tutte Polynomial

The multivariate Tutte polynomial of a graph G = (V ,E ) is the
(|E |+ 1)-variable polynomial given by

ZG (q,w) =
∑
A⊆E

qk(A)
∏
e∈A

we ,

where w = (we)e∈E is a vector of indeterminates.
We have PG (q) = ZG (q,−1).

Theorem (Sokal and BJ)

Suppose G = (V ,E ) is a loopless 2-connected graph and
q ∈ (1, 32/27]. Let w� be the root of w3 − 2wq − q2 which lies in
(−1, 0). Put

Lq =

{
(−q −

√
q2 − q,−q +

√
q2 − q) if q ∈ (1, 9/8]

(q/w�,w�) if q ∈ (9/8, 32/27]

If we ∈ Lq for all e ∈ E , then (−1)|V |ZG (q,w) > 0.
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The Interval Lq for 1 < q < 32/27
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