Cluster expansions for hard-core systems. I. Introduction

Roberto Fernández CNRS - Université de Rouen

Newton Institute, January 2008

The setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

► An *incompatibility* constraint

$$\gamma \sim \gamma'$$
 $\gamma \sim \gamma'$
if $\gamma, \gamma' \in \mathcal{P}$
incompatible compatible

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

A family of activities $z = \{z_{\gamma}\}_{{\gamma} \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

▶ An *incompatibility* constraint:

$$\gamma \nsim \gamma'$$
 if $\gamma, \gamma' \in \mathcal{P}$ incompatible compatible

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

The setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

► An *incompatibility* constraint:

$$\gamma \nsim \gamma'$$
 $\gamma \sim \gamma'$ if $\gamma, \gamma' \in \mathcal{P}$ incompatible compatible

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

▶ A family of activities $z = \{z_{\gamma}\}_{{\gamma} \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

The basic ("finite-volume") measures

Defined, for each *finite* family $\Lambda \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \geq 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Lambda$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

The basic ("finite-volume") measures

Defined, for each *finite* family $\Lambda \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \geq 1$ $\gamma_1, \gamma_2, \dots, \gamma_n \in \Lambda$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

The questions

- ightharpoonup Existence of the limit $\Lambda \to \mathcal{P}$ ("thermodynamic limit")
- ▶ Properties of the resulting measure (mixing properties dependency on parameters,...)

Defined, for each *finite* family $\Lambda \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \geq 1$ $\gamma_1, \gamma_2, \dots, \gamma_n \in \Lambda$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

The questions:

- \blacktriangleright Existence of the limit $\Lambda \to \mathcal{P}$ ("thermodynamic limit")
- ▶ Properties of the resulting measure (mixing properties, dependency on parameters,...)

Immediate:

- ▶ Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- ► Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate

- ► Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- \triangleright Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials....)

Immediate:

- ▶ Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- ▶ Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediates

- ► Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- \triangleright Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials....)

Immediate:

- ▶ Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- ▶ Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- ▶ Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ▶ Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials....)

Immediate:

- ▶ Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- ▶ Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- ► Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ▶ Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials....)

Immediate:

- ▶ Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- ▶ Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- ► Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ▶ Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Equivalently, consider the interaction graph $\mathcal{G}=(\mathcal{P},\mathcal{E})$ Unoriented graph with:

- ► Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma'$$
 iff $\{\gamma, \gamma'\} \in \mathcal{E}$ or $\gamma \leftrightarrow \gamma'$ (1)

(contrast!

- \triangleright \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)
- ▶ For simplicity: each polymer incompatible with itself $(\gamma \leftrightarrow \gamma, \forall \gamma \in \mathcal{P})$

Equivalently, consider the interaction graph $\mathcal{G}=(\mathcal{P},\mathcal{E})$ Unoriented graph with:

- ► Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

(contrast!)

- \triangleright \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)
- ▶ For simplicity: each polymer incompatible with itself $(\gamma \leftrightarrow \gamma, \forall \gamma \in \mathcal{P})$

Equivalently, consider the interaction graph $\mathcal{G}=(\mathcal{P},\mathcal{E})$ Unoriented graph with:

- ▶ Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

(contrast!)

- \triangleright \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)
- ► For simplicity: each polymer incompatible with itself $(\gamma \leftrightarrow \gamma, \forall \gamma \in \mathcal{P})$

Equivalently, consider the interaction graph $\mathcal{G}=(\mathcal{P},\mathcal{E})$ Unoriented graph with:

- ▶ Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

(contrast!)

- \triangleright \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)
- ► For simplicity: each polymer incompatible with itself $(\gamma \leftrightarrow \gamma, \forall \gamma \in \mathcal{P})$

Example: Single-call loss networks

Definition

- $\triangleright \mathcal{P} = \text{finite subsets of } \mathbb{Z}^d \text{the } calls$
- A call γ is attempted with Poissonian rates z_{γ}
- ▶ Call succeeds if it does not intercept existing calls
- \triangleright Once established, calls have an $\exp(1)$ life span

Remarks

- ▶ Basic measures are invariant for the finite-region process $(\gamma \nsim \gamma' \iff \gamma \cap \gamma' \neq \emptyset)$
- ► Thermodynamic limit: infinite-volume process
- ▶ Discrete point process with hard-core conditions

Example: Single-call loss networks

Definition

- $\triangleright \mathcal{P} = \text{finite subsets of } \mathbb{Z}^d \text{the } calls$
- ▶ A call γ is attempted with Poissonian rates z_{γ}
- ► Call succeeds if it does not intercept existing calls
- \triangleright Once established, calls have an $\exp(1)$ life span

Remarks

- ▶ Basic measures are invariant for the finite-region process $(\gamma \nsim \gamma' \iff \gamma \cap \gamma' \neq \emptyset)$
- ► Thermodynamic limit: infinite-volume process
- ▶ Discrete point process with hard-core conditions

Statistical mechanical lattice models

Their ingredients are:

- ▶ Lattice L countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)
- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- ▶ Interaction $\Phi = \{\phi_B : B \subset\subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$. [Bond: B such that $\phi_B \neq 0$]
- \blacktriangleright Hamiltonians: For $\Lambda \subset\subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda} \sigma)$$

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)
- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- ► Interaction $\Phi = \{\phi_B : B \subset\subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$. [Bond: B such that $\phi_B \neq 0$]
- ▶ Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda} \sigma)$$

Statistical mechanical measures

Their finite-volume versions are defined by weights

$$W_{\Lambda}(\omega \mid \sigma) = \frac{\exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\}}{Z_{\Lambda}^{\sigma}}$$

with

$$Z_{\Lambda}^{\sigma} = \int \exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\} \bigotimes_{x \in \Lambda} \mu_{E}(d\omega_{x})$$

 $(\beta = inverse temperature)$

Ising model at low temperatures

 $\mathbb{L} = \mathbb{Z}^d$, $E = \{-1, 1\}$, \mathcal{F} =discrete, μ_E =counting

$$\phi_B(\omega) = \begin{cases} -J \omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

$$H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - J N_{\Lambda}$$

$$F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$$

 $N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\omega_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\omega)\}}$$

Ising model at low temperatures

$$\mathbb{L} = \mathbb{Z}^d$$
, $E = \{-1, 1\}$, \mathcal{F} =discrete, μ_E =counting

$$\phi_B(\omega) = \begin{cases} -J \omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Call a bond
$$B = \{x, y\}$$
 frustrated if $\omega_x \omega_y = -1$

$$H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - JN_{\Lambda};$$

$$F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$$

 $N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\omega_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\omega)\}}$$

Ising model at low temperatures

$$\mathbb{L} = \mathbb{Z}^d$$
, $E = \{-1, 1\}$, \mathcal{F} =discrete, μ_E =counting

$$\phi_B(\omega) = \begin{cases} -J \omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Call a bond
$$B = \{x, y\}$$
 frustrated if $\omega_x \omega_y = -1$

$$H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - JN_{\Lambda};$$

$$F_{\Lambda}(\omega) = \#\{B \text{ frustrated } : B \cap \Lambda \neq \emptyset\}$$

 $N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$

As N_{Λ} is independent of ω

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\omega \Lambda} \exp\{-2\beta J F_{\Lambda}(\omega)\}}$$

Contour representation

- ▶ Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- ► These plaquettes form a family of disjoint closed connected surfaces (curves)
- ▶ Each such closed surface is a *contour*
- ▶ Contours are disjoint: $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$
- ▶ Each ω is in one-to-one correspondence with a *compatible* family of contours $\Gamma(\omega)$

Contour representation

- ► Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- ► These plaquettes form a family of disjoint closed connected surfaces (curves)
- ► Each such closed surface is a *contour*
- ▶ Contours are disjoint: $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$
- ▶ Each ω is in one-to-one correspondence with a *compatible* family of contours $\Gamma(\omega)$

Contour polymer model

$$\exp\{-2\beta J F_{\Lambda}(\omega)\} = \exp\{-\sum_{\gamma \in \Gamma(\omega)} 2\beta J |\gamma|\}$$
$$= \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with $z_{\gamma} = \exp\{-2\beta J |\gamma|\}$. Hence

$$W_{\Lambda}(\omega \mid +) = \frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Contour polymer model

$$\exp\{-2\beta J F_{\Lambda}(\omega)\} = \exp\{-\sum_{\gamma \in \Gamma(\omega)} 2\beta J |\gamma|\}$$
$$= \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with $z_{\gamma} = \exp\{-2\beta J |\gamma|\}$. Hence

$$W_{\Lambda}(\omega \mid +) = \frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Geometrical polymer models

Polymers of previous two examples are defined by parts of a set These are the original polymer models of Gruber and Kunz

Formally, geometrical polymer models are defined by:

- ► A set V
- ightharpoonup A family $\mathcal P$ of finite subsets of $\mathbb V$
- Activity values $(z_{\gamma})_{\gamma \in \mathbb{V}}$
- ▶ The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

More generally, V can be the vertex set of a graph and

- ▶ Polymers are defined through connectivity properties
- ► Compatibility determined by graph distances

Geometrical polymer models

Polymers of previous two examples are defined by parts of a set These are the original polymer models of Gruber and Kunz Formally, geometrical polymer models are defined by:

- ightharpoonup A set \mathbb{V}
- ightharpoonup A family \mathcal{P} of finite subsets of \mathbb{V}
- Activity values $(z_{\gamma})_{\gamma \in \mathbb{V}}$
- ▶ The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

More generally, V can be the vertex set of a graph and

- ▶ Polymers are defined through connectivity properties
- ▶ Compatibility determined by graph distances

Geometrical polymer models

Polymers of previous two examples are defined by parts of a set These are the original polymer models of Gruber and Kunz Formally, geometrical polymer models are defined by:

- ightharpoonup A set \mathbb{V}
- \triangleright A family \mathcal{P} of finite subsets of \mathbb{V}
- Activity values $(z_{\gamma})_{\gamma \in \mathbb{V}}$
- ▶ The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

More generally, V can be the vertex set of a graph and

- ▶ Polymers are defined through connectivity properties
- ▶ Compatibility determined by graph distances

- functions
- ▶ So are characteristic and moment-generating functions
- ► (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

- Probabilities of cylindrical events are ratios of partition functions
- ► So are characteristic and moment-generating functions
- ▶ (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

- Probabilities of cylindrical events are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- ▶ (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

- Probabilities of cylindrical events are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- ▶ (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Cylindrical polymer events

Let

- ▶ Prob_{Λ} the basic measure in Λ
- $ightharpoonup \gamma_1, \ldots, \gamma_k$ mutually compatible polymers in Λ

Then

$$\operatorname{Prob}_{\Lambda}(\{\gamma_1,\ldots,\gamma_k \text{ are present}\}) = z_{\gamma_1}\cdots z_{\gamma_k} \frac{\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}}{\Xi_{\Lambda}}$$

where

$$\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}$$
 = partition function of polymers in Λ compatible with γ_1,\ldots,γ_k

Cylindrical polymer events

Let

- ▶ Prob_{Λ} the basic measure in Λ
- $\triangleright \gamma_1, \ldots, \gamma_k$ mutually compatible polymers in Λ

Then

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{1},\ldots,\gamma_{k} \text{ are present}\}) = z_{\gamma_{1}}\cdots z_{\gamma_{k}} \frac{\Xi_{\Lambda\setminus\{\gamma_{1},\ldots,\gamma_{k}\}^{*}}}{\Xi_{\Lambda}}$$

where

 $\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}$ = partition function of polymers in Λ compatible with $\gamma_1, \ldots, \gamma_k$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \Lambda$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(z)} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \Lambda} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi [\alpha(\gamma_1) + \dots + \alpha(\gamma_n)]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

$$E_{\Lambda}(e^{\xi S_{\Lambda}}) = \frac{\Xi_{\Lambda}(z^{\xi})}{\Xi_{\Lambda}(z)} \text{ with } z_{\gamma}^{\xi} = z_{\gamma} e^{\xi \alpha(\gamma)}$$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \Lambda$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(z)} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \Lambda} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi [\alpha(\gamma_1) + \dots + \alpha(\gamma_n)]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is

$$E_{\Lambda}(\mathrm{e}^{\xi S_{\Lambda}}) = \frac{\Xi_{\Lambda}(z^{\xi})}{\Xi_{\Lambda}(z)} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma} \, \mathrm{e}^{\xi \alpha (\gamma)}$$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \Lambda$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\{\gamma_{1}, \dots, \gamma_{n}\} \subset \Lambda} z_{\gamma_{1}} \cdots z_{\gamma_{n}} e^{\xi \left[\alpha(\gamma_{1}) + \dots + \alpha(\gamma_{n})\right]} \prod_{j < k} \mathbb{1}_{\{\gamma_{j} \sim \gamma_{k}\}}$$

That is,

$$E_{\Lambda}(e^{\xi S_{\Lambda}}) = \frac{\Xi_{\Lambda}(z^{\xi})}{\Xi_{\Lambda}(z)} \text{ with } z_{\gamma}^{\xi} = z_{\gamma} e^{\xi \alpha(\gamma)}$$

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \ = \ \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ

Key information: smoothness as function of β and \boldsymbol{h}

"Functions should be analytic unless there is a good reason"

Sufficient conditions for analyticity of f:

- \triangleright Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- ▶ Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \ = \ \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ Key information: smoothness as function of β and h

"Functions should be analytic unless there is a good reason' Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f:

- \triangleright Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- ▶ Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \ = \ \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z_{\Lambda}^{\sigma}$$

Key information: smoothness as function of β and h "Functions should be analytic unless there is a good reason" Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f:

exists and is independent of the boundary condition σ

- \triangleright Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- ▶ Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \ = \ \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ Key information: smoothness as function of β and h"Functions should be analytic unless there is a good reason" Loss of analyticity = phase transition (of some sort)

- \triangleright Zeros of Z_{\land} \land -uniformly away from (β, h)
- ▶ Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \ = \ \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ Key information: smoothness as function of β and h"Functions should be analytic unless there is a good reason" Loss of analyticity = phase transition (of some sort) Sufficient conditions for analyticity of f:

- ► Zeros of Z_{Λ} Λ-uniformly away from (β, h)
- Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- The state of the s

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

${f Probabilists}:$

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- Totale to (confect) dissolution elementaries

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- Total to (confort) consists a localities

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- I eads to (porfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ► Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- ► Genesis/reincarnations: Mayer, virial, high-temperature, low-density, . . . expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as formal exponentials of another formal series

$$\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n} \right\}$$

The series between curly brackets is the cluster expansion

- $ightharpoonup \phi^T(\gamma_1,\ldots,\gamma_n)$: Ursell or truncated functions (symmetric
- ightharpoonup Clusters: Families $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $\phi^T(\gamma_1,\ldots,\gamma_n)\neq 0$
- Clusters are connected wirt "~"

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as formal exponentials of another formal series

$$\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n} \right\}$$

The series between curly brackets is the *cluster expansion*

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \Lambda^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as formal exponentials of another formal series

$$\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n} \right\}$$

The series between curly brackets is the cluster expansion

- $ightharpoonup \phi^T(\gamma_1,\ldots,\gamma_n)$: Ursell or truncated functions (symmetric)
- Clusters: Families $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $\phi^T(\gamma_1, \ldots, \gamma_n) \neq 0$
- ► Clusters are connected w.r.t. "~"

Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios Substracting cluster expansions:

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1,\ldots,\gamma_n)\subset\Lambda^n\\\exists i:\,\gamma_i=\gamma_0}} \phi^T(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\ldots z_{\gamma_n}\right\}$$

Slightly more convenient series

$$\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

Two strategies to deal with this series: classical and inductive

Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios Substracting cluster expansions:

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1,\ldots,\gamma_n)\subset\Lambda^n\\\exists i:\,\gamma_i=\gamma_0}} \phi^T(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\ldots z_{\gamma_n}\right\}$$

Slightly more convenient series:

$$\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

Two strategies to deal with this series: classical and inductive

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge absolutely for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \leq |z_{\gamma_0}| \; \Pi_{\gamma_0}(|z|)$$

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge absolutely for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ

Within this region

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \leq |z_{\gamma_0}| \Pi_{\gamma_0}(|z|)$$

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge absolutely for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$rac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \ \le \ |z_{\gamma_0}| \ \Pi_{\gamma_0}(|oldsymbol{z}|)$$

Consequences

- \triangleright Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ightharpoonup Within \mathcal{R}
 - ▶ Explicit series expressions for free energy and correlations
 - ightharpoonup Explicit δ -mixing:

$$\left| \frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|$$

with
$$F(d) \to 0$$
 as $d \to \infty$

▶ Central limit theorem

Consequences

- ▶ Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ightharpoonup Within ${\cal R}$
 - Explicit series expressions for free energy and correlations
 - **Explicit** δ-mixing:

$$\left| \frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|$$

with
$$F(d) \to 0$$
 as $d \to \infty$

► Central limit theorem

Consequences

- \triangleright Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ightharpoonup Within \mathcal{R}
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

$$\left| \frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|$$

with
$$F(d) \to 0$$
 as $d \to \infty$

▶ Central limit theorem

Consequences

- \triangleright Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ightharpoonup Within $\mathcal R$
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

$$\left| \frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|$$

with
$$F(d) \to 0$$
 as $d \to \infty$

► Central limit theorem

Free energy expansions

For geometrical translation-invariant polymers,

$$f = \lim_{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n): 0 \in \cup \gamma_i} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

As

$$\phi^{T}(\gamma) = 1 \quad , \quad \phi^{T}(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$$

$$f = \sum_{\gamma \geq 0} z_{\gamma} - \frac{1}{2} \sum_{\gamma \neq \gamma'} z_{\gamma'} + O(|z|^{3})$$

Free energy expansions

For geometrical translation-invariant polymers,

$$f = \lim_{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_{1}, \dots, \gamma_{n}): 0 \in \cup \gamma_{i}} \phi_{n}^{T}(\gamma_{1}, \dots, \gamma_{n}) z_{\gamma_{1}} \dots z_{\gamma_{n}}$$

As

$$\phi^{T}(\gamma) = 1$$
 , $\phi^{T}(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$

$$f = \sum_{\gamma \ni 0} z_{\gamma} - \frac{1}{2} \sum_{\gamma \not\sim \gamma'} z_{\gamma} z_{\gamma'} + O(|z|^3)$$

Free energy expansions

For geometrical translation-invariant polymers,

$$f = \lim_{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n): 0 \in \cup \gamma_i} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

As

$$\phi^{T}(\gamma) = 1 \quad , \quad \phi^{T}(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$$
$$f = \sum_{\gamma \geq 0} z_{\gamma} - \frac{1}{2} \sum_{\gamma \nsim \gamma'} z_{\gamma} z_{\gamma'} + O(|z|^{3})$$

$$\operatorname{Prob}_{\Lambda}\big(\{\gamma_{0}\}\big) \; = \; z_{\gamma_{0}} \, \frac{\Xi_{\Lambda \setminus \{\gamma_{0}\}^{*}}}{\Xi_{\Lambda}} \; = \; z_{\gamma_{0}} \, \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \subset \Lambda}} W^{T}(\mathcal{C})\right\}}$$

Hence

$$\operatorname{Prob}(\{\gamma_0\}) = z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n)} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\}$$

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\}) = z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}\}^{*}}}{\Xi_{\Lambda}} = z_{\gamma_{0}} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \subset \Lambda}} W^{T}(\mathcal{C})\right\}}$$

Hence

$$\operatorname{Prob}(\{\gamma_0\}) = z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ 2 \neq 1 \text{ ord}}} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\}$$

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\}) = z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}\}^{*}}}{\Xi_{\Lambda}} = z_{\gamma_{0}} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \subset \Lambda}} W^{T}(\mathcal{C})\right\}}$$

Hence

$$\operatorname{Prob}(\{\gamma_0\}) = z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ \exists i, \gamma_i \neq \gamma_0}} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\}$$

Examples II

Mixing properties

$$\frac{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}, \gamma_{x}\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\})\operatorname{Prob}_{\Lambda}(\{\gamma_{x}\})}$$

$$= \frac{\exp\left\{-\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \{\gamma_{0}\} \neq x}} W^{T}(\mathcal{C})\right\}}{\exp\left\{-\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \gamma_{0}}} W^{T}(\mathcal{C})\right\}} \exp\left\{-\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \gamma_{0}}} W^{T}(\mathcal{C})\right\}$$

$$= \exp \Big\{ \sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \not\simeq \gamma_0 \\ \mathcal{C} \not\simeq \gamma_T}} W^T(\mathcal{C}) \Big\}$$

$$= e^{F[d(\gamma_0, \gamma_x)]}$$

Mixing properties

$$\frac{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}, \gamma_{x}\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\})\operatorname{Prob}_{\Lambda}(\{\gamma_{x}\})}$$

$$= \frac{\exp\left\{-\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{-\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \gamma_{0}}} W^{T}(\mathcal{C})\right\}}$$

$$= \exp\left\{\sum_{\substack{\mathcal{C} \subset \Lambda \\ \mathcal{C} \neq \gamma_{0} \\ \mathcal{C} \neq \gamma_{x}}} W^{T}(\mathcal{C})\right\}$$

$$= e^{F[d(\gamma_{0}, \gamma_{x})]}$$

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda\setminus\{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda} \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- ightharpoonup A posteriori: expansion converges in \mathcal{R} \longrightarrow above concl.

Questions raised

- ▶ Why the alternative approach lead to better results
- ► Can it be interpreted in terms of the classical approach?

Find conditions on z defining a region \mathcal{R} such that

$$\Xi_{\Lambda\setminus\{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda} \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- ▶ A posteriori: expansion converges in \mathcal{R} \longrightarrow above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

Find conditions on \mathbf{z} defining a region \mathcal{R} such that

$$\Xi_{\Lambda\setminus\{\gamma_0\}^*}\neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda}\neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- ▶ A posteriori: expansion converges in \mathcal{R} \longrightarrow above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

Find conditions on z defining a region R such that

$$\Xi_{\Lambda\setminus\{\gamma_0\}^*}\neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda}\neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- ▶ A posteriori: expansion converges in \mathcal{R} \longrightarrow above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$Z_{\Lambda}^{\mathrm{model}}(\mathrm{param.}) = \mathrm{const}_{\Lambda} \, \Xi_{\Lambda}^{\mathrm{polymer}}(\boldsymbol{z})$$

 $(\text{const}_{\Lambda} \sim a^{|\Lambda|})$. Will see two examples

$$\prod_{a \in S} [\psi_a + \varphi_a] = \sum_{A \subset S} \prod_{a \in A} \varphi_a \prod_{a \in S \setminus A} \psi_a$$

$$[\prod_{\emptyset} \equiv 1]$$

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$Z_{\Lambda}^{
m model}({
m param.}) = {
m const}_{\Lambda} \; \Xi_{\Lambda}^{
m polymer}({m z})$$

 $(\text{const}_{\Lambda} \sim a^{|\Lambda|})$. Will see two examples

Useful observation

If S finite set and $(\varphi_a)_{a \in S}$, $(\psi_a)_{a \in S}$ complex-valued:

$$\prod_{a \in S} [\psi_a + \varphi_a] = \sum_{A \subset S} \prod_{a \in A} \varphi_a \prod_{a \in S \setminus A} \psi_a$$

$$[\prod_{\emptyset} \equiv 1]$$

Examples II

Potts model

L any (eg. \mathbb{Z}^d), $E = \{1, \dots, q\}$, \mathcal{F} =discrete, μ_E =counting $\phi_B(\omega) = \begin{cases} -J_{xy} \left(\delta_{\omega_x \omega_y} - 1\right) & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$

$$\phi_{\{x,y\}} = J \text{ if } \omega_x \neq \omega_y, \text{ 0 otherwise}$$

▶ If
$$q = 2$$
, Potts=Ising

$$Z_{\Lambda}^{\mathrm{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x, y\} \subset \Lambda} e^{\beta J_{xy}(\delta_{\omega_x \omega_y} - 1)}$$

Potts model

L any (eg. \mathbb{Z}^d), $E = \{1, \dots, q\}$, \mathcal{F} =discrete, μ_E =counting $\phi_B(\omega) = \begin{cases} -J_{xy} \left(\delta_{\omega_x \omega_y} - 1\right) & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$

$$\phi_{\{x,y\}} = J \text{ if } \omega_x \neq \omega_y, \text{ 0 otherwise}$$

▶ If
$$q = 2$$
, Potts=Ising

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \subset \Lambda} e^{\beta J_{xy}(\delta_{\omega_{x}\omega_{y}} - 1)}$$

Examples II

Potts model

$$\mathbb{L}$$
 any (eg. \mathbb{Z}^d), $E = \{1, \dots, q\}$, \mathcal{F} =discrete, μ_E =counting
$$\phi_B(\omega) = \begin{cases} -J_{xy} \left(\delta_{\omega_x \omega_y} - 1\right) & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

- $\phi_{\{x,y\}} = J \text{ if } \omega_x \neq \omega_y, \text{ 0 otherwise}$
- ▶ If q = 2, Potts=Ising

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \subset \Lambda} e^{\beta J_{xy}(\delta_{\omega_x \omega_y} - 1)}$$

Crucial observation:

$$e^{\beta J_{xy}(\delta_{\omega_x\omega_y}-1)} = \delta_{\omega_x\omega_y} + e^{-\beta J_{xy}}(1 - \delta_{\omega_x\omega_y})$$
$$= (1 - p_{xy}) + p_{xy}\delta_{\omega_x\omega_y}$$

with $p_{xy} = 1 - e^{-\beta J_{xy}}$. Hence

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \in \Lambda} \left[(1 - p_{xy}) + p_{xy} \, \delta_{\omega_{x} \omega_{y}} \right]$$
$$= \sum_{\omega_{\Lambda}} \sum_{B \subset \mathcal{B}} \prod_{\{x,y\} \in B} \delta_{\omega_{x} \omega_{y}} \prod_{\{x,y\} \in B} p_{xy} \prod_{\{x,y\} \notin B} (1 - p_{xy})$$

$$(\mathcal{B} = bonds)$$

Crucial observation:

$$e^{\beta J_{xy}(\delta_{\omega_x\omega_y}-1)} = \delta_{\omega_x\omega_y} + e^{-\beta J_{xy}}(1 - \delta_{\omega_x\omega_y})$$
$$= (1 - p_{xy}) + p_{xy}\delta_{\omega_x\omega_y}$$

with $p_{xy} = 1 - e^{-\beta J_{xy}}$. Hence

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \subset \Lambda} \left[(1 - p_{xy}) + p_{xy} \, \delta_{\omega_{x} \omega_{y}} \right]$$
$$= \sum_{\omega_{\Lambda}} \sum_{B \subset \mathcal{B}} \prod_{\{x,y\} \in B} \delta_{\omega_{x} \omega_{y}} \prod_{\{x,y\} \in B} p_{xy} \prod_{\{x,y\} \notin B} (1 - p_{xy})$$

 $(\mathcal{B} = bonds)$

Crucial observation:

$$e^{\beta J_{xy}(\delta_{\omega_x\omega_y}-1)} = \delta_{\omega_x\omega_y} + e^{-\beta J_{xy}}(1 - \delta_{\omega_x\omega_y})$$
$$= (1 - p_{xy}) + p_{xy}\delta_{\omega_x\omega_y}$$

with $p_{xy} = 1 - e^{-\beta J_{xy}}$. Hence

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \subset \Lambda} \left[(1 - p_{xy}) + p_{xy} \, \delta_{\omega_{x} \omega_{y}} \right]$$
$$= \sum_{\omega_{\Lambda}} \prod_{B \subset \mathcal{B}} \sum_{\{x,y\} \in B} \delta_{\omega_{x} \omega_{y}} \prod_{\{x,y\} \in B} p_{xy} \prod_{\{x,y\} \notin B} (1 - p_{xy})$$

 $(\mathcal{B} = bonds)$

Crucial observation:

$$e^{\beta J_{xy}(\delta_{\omega_x\omega_y}-1)} = \delta_{\omega_x\omega_y} + e^{-\beta J_{xy}}(1 - \delta_{\omega_x\omega_y})$$
$$= (1 - p_{xy}) + p_{xy}\delta_{\omega_x\omega_y}$$

with $p_{xy} = 1 - e^{-\beta J_{xy}}$. Hence

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\omega_{\Lambda}} \prod_{\{x,y\} \subset \Lambda} \left[(1 - p_{xy}) + p_{xy} \, \delta_{\omega_{x} \omega_{y}} \right]$$
$$= \sum_{\omega_{\Lambda}} \sum_{\boldsymbol{B} \subset \mathcal{B}} \prod_{\{x,y\} \in \boldsymbol{B}} \delta_{\omega_{x} \omega_{y}} \prod_{\{x,y\} \in \boldsymbol{B}} p_{xy} \prod_{\{x,y\} \notin \boldsymbol{B}} (1 - p_{xy})$$

$$(\mathcal{B} = bonds)$$

The FK expansion

As

$$\sum_{\omega_{\Lambda}} \prod_{\{x,y\} \in \boldsymbol{B}} \delta_{\omega_{x}\omega_{y}} = q^{C(\boldsymbol{B})}$$

with $C(\mathbf{B}) = \#$ connected components of \mathbf{B} ,

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \sum_{\boldsymbol{B} \subset \mathcal{B}} q^{C(\boldsymbol{B})} \prod_{\{x,y\} \in \boldsymbol{B}} p_{xy} \prod_{\{x,y\} \notin \boldsymbol{B}} (1 - p_{xy})$$

- ightharpoonup q = 1: regular (independent) bond percolation in \mathbb{Z}^d
- q > 1: dependent percolation due to $q^{C(B)}$

Examples II

FK model

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \left[\prod_{\{x,y\} \in \mathcal{B}} (1 - p_{xy}) \right] \sum_{\boldsymbol{B} \subset \mathcal{B}} q^{C(\boldsymbol{B})} \prod_{\{x,y\} \in \boldsymbol{B}} \frac{p_{xy}}{1 - p_{xy}}$$
$$= \left[\prod_{\{x,y\} \in \mathcal{B}} (1 - p_{xy}) \right] Z_{\Lambda}^{\text{FK}}(q, \boldsymbol{v})$$

with

$$Z_{\Lambda}^{\mathrm{FK}}(q, v) = \sum_{\boldsymbol{B} \subset \mathcal{B}} q^{C(\boldsymbol{B})} \prod_{\{x, y\} \in \boldsymbol{B}} v_{xy}$$

and

$$v_{xy} = \frac{p_{xy}}{1 - p_{xy}} = e^{\beta J_{xy}} -$$

Cluster expansions

$$Z_{\Lambda}^{\text{Potts}}(\beta, q) = \left[\prod_{\{x,y\} \in \mathcal{B}} (1 - p_{xy}) \right] \sum_{\boldsymbol{B} \subset \mathcal{B}} q^{C(\boldsymbol{B})} \prod_{\{x,y\} \in \boldsymbol{B}} \frac{p_{xy}}{1 - p_{xy}}$$
$$= \left[\prod_{\{x,y\} \in \mathcal{B}} (1 - p_{xy}) \right] Z_{\Lambda}^{\text{FK}}(q, \boldsymbol{v})$$

with

$$Z_{\Lambda}^{\mathrm{FK}}(q, \boldsymbol{v}) = \sum_{\boldsymbol{B} \subset \mathcal{B}} q^{C(\boldsymbol{B})} \prod_{\{x,y\} \in \boldsymbol{B}} v_{xy}$$

and

$$v_{xy} = \frac{p_{xy}}{1 - p_{xy}} = e^{\beta J_{xy}} - 1$$

FK polymer model

(Also called random-cluster model)

Reorder the sum:

- ▶ Each \boldsymbol{B} defines a graph $G = (V_{\boldsymbol{B}}, \boldsymbol{B})$
- ▶ Let $G_i = (V_i, \mathbf{B}_i), i = 1, ..., k$ connected components
 - ▶ The vertex sets are disjoints: $V_i \cap V_j = \emptyset$ if $i \neq j$
 - \triangleright The sets of bonds B_i are such that each G_i is connected

Furthermore

$$C(\boldsymbol{B}) = k + \# \text{ isolated points}$$

= $k + |\Lambda| - \sum |V_i|$
= $|\Lambda| - \sum (|V_i| - 1)$

FK polymer model

(Also called random-cluster model)

Reorder the sum:

- ► Each **B** defines a graph $G = (V_{\mathbf{B}}, \mathbf{B})$
- ▶ Let $G_i = (V_i, \mathbf{B}_i), i = 1, ..., k$ connected components
 - ▶ The vertex sets are disjoints: $V_i \cap V_j = \emptyset$ if $i \neq j$
 - ▶ The sets of bonds B_i are such that each G_i is connected

Furthermore

$$C(\boldsymbol{B}) = k + \# \text{ isolated points}$$

= $k + |\Lambda| - \sum |V_i|$
= $|\Lambda| - \sum (|V_i| - 1)$

FK polymer model

(Also called random-cluster model)

Reorder the sum:

- ► Each **B** defines a graph $G = (V_{\mathbf{B}}, \mathbf{B})$
- ▶ Let $G_i = (V_i, \mathbf{B}_i), i = 1, ..., k$ connected components
 - ▶ The vertex sets are disjoints: $V_i \cap V_j = \emptyset$ if $i \neq j$
 - ▶ The sets of bonds B_i are such that each G_i is connected

Furthermore

$$C(\boldsymbol{B}) = k + \text{\# isolated points}$$

= $k + |\Lambda| - \sum |V_i|$
= $|\Lambda| - \sum (|V_i| - 1)$

Cluster expansions

Examples II

High-q expansion

Then

$$\frac{Z_{\Lambda}^{\mathrm{FK}}(q, \boldsymbol{v})}{q^{|\Lambda|}} = \sum_{k \geq 0} \frac{1}{k!} \sum_{\substack{(V_1, \dots, V_k) \in \Lambda^k \\ \text{disjoints}}} \prod_{i=1}^k \left[q^{-(|V_i|-1)} \sum_{\substack{\boldsymbol{B}_i \subset \mathcal{B}_{V_i} \\ (V_i, \boldsymbol{B}_i) \text{ conn.}}} \prod_{\boldsymbol{x}, \boldsymbol{y} \} \in \boldsymbol{B}_i} v_{\boldsymbol{x} \, \boldsymbol{y}} \right]$$
$$= \Xi_{\Lambda}^{\mathrm{FK}}(\boldsymbol{z})$$

$$z_V = q^{-(|V|-1)} \sum_{\substack{B \subset \mathcal{B}_V \\ (VB) \text{ connected}}} \prod_{\{x,y\} \in B} v_{xy}$$

High-q expansion

Then

$$\frac{Z_{\Lambda}^{\mathrm{FK}}(q, \boldsymbol{v})}{q^{|\Lambda|}} = \sum_{k \geq 0} \frac{1}{k!} \sum_{\substack{(V_1, \dots, V_k) \in \Lambda^k \\ \text{disjoints}}} \prod_{i=1}^k \left[q^{-(|V_i|-1)} \sum_{\substack{\boldsymbol{B}_i \subset \mathcal{B}_{V_i} \\ (V_i, \boldsymbol{B}_i) \text{ conn.}}} \prod_{\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{B}_i} v_{\boldsymbol{x} \, \boldsymbol{y}} \right]$$
$$= \Xi_{\Lambda}^{\mathrm{FK}}(\boldsymbol{z})$$

FK geometrical polymer system: $\mathcal{P} = \{V \subset\subset \mathbb{L}\},\$

$$z_V = q^{-(|V|-1)} \sum_{\substack{\boldsymbol{B} \subset \mathcal{B}_V \\ (V,\boldsymbol{B}) \text{ connected}}} \prod_{\{x,y\} \in \boldsymbol{B}} v_{xy}$$

decreases as $q \to \infty$ (or as $\beta \to 0$)

Corresponding cluster expansion = high-q (high-T) expansion

Chromatic polynomials

Given a graph G = (V(G), E(G)):

$$P_G(q) = \#$$
 ways of properly coloring G with q colors

"properly" = adjacents vertices have different colors

$$P_G(q) = \sum_{\omega} \prod_{\{x,y\} \in E(G)} \left[1 - \delta_{\omega_x \omega_y} \right]$$

$$\chi_G = \min\{q : P_G(q) > 0\}$$

Chromatic polynomials

Given a graph G = (V(G), E(G)):

$$P_G(q) = \#$$
 ways of properly coloring G with q colors

"properly" = adjacents vertices have different colors

If
$$\omega: V(G) \to \{1, \ldots, q\}$$
 denote colorings

$$P_G(q) \; = \; \sum_{\omega} \prod_{\{x,y\} \in E(G)} \left[1 - \delta_{\omega_x \, \omega_y} \right]$$

Introduced by Birkhoff (1912) to determine

$$\chi_G = \min\{q : P_G(q) > 0\}$$

 $chromatic \ number = minimal \ q$ for a proper coloring

Chromatic polynomials

Given a graph G = (V(G), E(G)):

$$P_G(q) = \#$$
 ways of properly coloring G with q colors

"properly" = adjacents vertices have different colors

If $\omega: V(G) \to \{1, \ldots, q\}$ denote colorings

$$P_G(q) \; = \; \sum_{\omega} \prod_{\{x,y\} \in E(G)} \left[1 - \delta_{\omega_x \, \omega_y} \right]$$

Introduced by Birkhoff (1912) to determine

$$\chi_G = \min\{q : P_G(q) > 0\}$$

 $chromatic \ number = minimal \ q \ for a proper coloring$

Examples II

Tutte polynomial

Slight generalization: $(-1) \rightarrow v_{xy}$

$$P_G(q, \boldsymbol{v}) = \sum_{\omega} \prod_{\{x,y\} \in E(G)} \left[1 + v_{xy} \, \delta_{\omega_x \, \omega_y} \right]$$

$$P_G(q, \mathbf{v}) = Z_{\Lambda}^{\mathrm{FK}}(q, \mathbf{v}) = q^{|\Lambda|} \Xi_{\Lambda}^{\mathrm{FK}}(\mathbf{z})$$

Tutte polynomial

Slight generalization: $(-1) \rightarrow v_{xy}$

$$P_G(q, \boldsymbol{v}) \; = \; \sum_{\omega} \; \prod_{\{x,y\} \in E(G)} \Bigl[1 + v_{x\,y} \, \delta_{\omega_x \, \omega_y} \Bigr]$$

- ▶ Dichromatic polynomial
- ▶ Dichromate
- ▶ Whitney rank function
- ► Tutte polynomial

For us

$$P_G(q, \mathbf{v}) = Z_{\Lambda}^{\text{FK}}(q, \mathbf{v}) = q^{|\Lambda|} \Xi_{\Lambda}^{\text{FK}}(\mathbf{z})$$

This identity proves that $P_G(q, \mathbf{v})$ is a polynomial in q

Tutte polynomial

Slight generalization: $(-1) \rightarrow v_{xy}$

$$P_G(q, \mathbf{v}) = \sum_{\omega} \prod_{\{x,y\} \in E(G)} \left[1 + v_{xy} \, \delta_{\omega_x \, \omega_y} \right]$$

- ▶ Dichromatic polynomial
- Dichromate
- ▶ Whitney rank function
- ► Tutte polynomial

For us

$$P_G(q, \boldsymbol{v}) = Z_{\Lambda}^{\mathrm{FK}}(q, \boldsymbol{v}) = q^{|\Lambda|} \Xi_{\Lambda}^{\mathrm{FK}}(\boldsymbol{z})$$

This identity proves that $P_G(q, \mathbf{v})$ is a polynomial in q

Chromatic numbers and cluster expansions

If $J_{xy} < 0$ (antiferromagnetic Potts model)

$$v_{xy} = e^{\beta J_{xy}} - 1 \xrightarrow{\beta \to \infty} -1$$

Hence

$$P_G(q) = Z_{\Lambda}^{\text{FK}}(q, -1) = q^{|\Lambda|} \Xi_{\Lambda}^{\text{FK}}(z^-)$$

with

$$z_V^- = q^{-(|V|-1)} \sum_{\substack{B \subset \mathcal{B}_V \\ (V,B) \text{ conn}}} (-1)^{|B|}$$

Region free the zeros of $P_G(q) \to \text{bound on } \chi_G$

Chromatic numbers and cluster expansions

If $J_{xy} < 0$ (antiferromagnetic Potts model)

$$v_{xy} = e^{\beta J_{xy}} - 1 \xrightarrow{\beta \to \infty} -1$$

Hence

$$P_G(q) = Z_{\Lambda}^{\mathrm{FK}}(q, -1) = q^{|\Lambda|} \Xi_{\Lambda}^{\mathrm{FK}}(\boldsymbol{z}^-)$$

with

$$z_V^- = q^{-(|V|-1)} \sum_{\substack{\mathbf{B} \subset \mathcal{B}_{\mathbf{V}} \\ (\mathbf{V}, \mathbf{B}) \text{ conn.}}} (-1)^{|\mathbf{B}|}$$

Region free the zeros of $P_G(q) \rightarrow$ bound on χ_G