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Newton Institute, January 2008



Genesis Examples I Partitions Cluster expansions Examples II

The setup

Goal: To study systems of objects constrained only by a
“non-overlapping” condition
Countable family P of objects: polymers, animals, . . . ,
characterized by

I An incompatibility constraint:

γ � γ′

γ ∼ γ′
if γ, γ′ ∈ P incompatible

compatible

For simplicity: each polymer incompatible with itself
(γ � γ, ∀γ ∈ P)

I A family of activities z = {zγ}γ∈P ∈ CP .
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The basic (“finite-volume”) measures

Defined, for each finite family Λ ⊂ P, by weights

WΛ

(
{γ1, γ2, . . . , γn}

)
=

1
ΞΛ(z)

zγ1zγ2 · · · zγn

∏
j<k

11{γj∼γk}

for n ≥ 1 γ1, γ2, . . . , γn ∈ Λ, and WΛ(∅) = 1/ΞΛ, where

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Λn

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}

The questions:

I Existence of the limit Λ → P (“thermodynamic limit”)
I Properties of the resulting measure (mixing properties,

dependency on parameters,. . . )
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Motivation

Immediate:

I Physics: Grand-canonical ensemble of polymer gas with
activities zγ and hard-core interaction

I Statistics: Invariant measure of point processes with
not-overlapping grains and birth rates zγ

Less immediate:

I Statistical mechanical models at high and low temperatures
are mapped into such systems

I More generally: most perturbative arguments in physics
involve maps of this type (choice of the “right” variables)

I Zeros of the partition functions ΞΛ relate to phase
transitions (sphere packing, chromatic polynomials,. . . )
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Graph-theoretical framework

Equivalently, consider the interaction graph G = (P, E)
Unoriented graph with:

I Vertices = polymers
I Edges = incompatible pairs

γ � γ′ iff {γ, γ′} ∈ E or γ ↔ γ′ (1)

(contrast!)
I E is arbitrary; vertices can be of infinite degree (polymers

incompatible with infinitely many other polymers)
I For simplicity: each polymer incompatible with itself

(γ ↔ γ, ∀γ ∈ P)
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Example: Single-call loss networks

Definition

I P = finite subsets of Zd —the calls
I A call γ is attempted with Poissonian rates zγ
I Call succeeds if it does not intercept existing calls
I Once established, calls have an exp(1) life span

Remarks

I Basic measures are invariant for the finite-region process
(γ � γ′ ⇐⇒ γ ∩ γ′ 6= ∅)

I Thermodynamic limit: infinite-volume process
I Discrete point process with hard-core conditions
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Statistical mechanical lattice models

Their ingredients are:

I Lattice L countable set of sites (e.g. Zd)
I Single-site space (E,F , µE) with natural measure structure

(e.g. counting measure if E countable, Borel if E ⊂ Rd)
I Configuration space Ω = EL, with product measure
I Interaction Φ = {φB : B ⊂⊂ L} where φB = φB(ωB).

[Bond: B such that φB 6= 0]
I Hamiltonians: For Λ ⊂⊂ L, and boundary condition σ

HΛ(ω | σ) =
∑
B⊂Λ

φB(ωΛσ)
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Statistical mechanical measures

Their finite-volume versions are defined by weights

WΛ(ω | σ) =
exp{−βHΛ(ω | σ)}

Zσ
Λ

with
Zσ

Λ =
∫

exp{−βHΛ(ω | σ)}
⊗
x∈Λ

µE(dωx)

(β = inverse temperature)
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Ising model at low temperatures

L = Zd, E = {−1, 1}, F =discrete, µE =counting

φB(ω) =
{
−J ωxωy if B = {x, y} n.n.

0 otherwise

Call a bond B = {x, y} frustrated if ωxωy = −1

HΛ(ω | +) = 2J FΛ(ω)− JNΛ ;

FΛ(ω) = #{B frustrated : B ∩ Λ 6= ∅}
NΛ = #{B : B ∩ Λ 6= ∅}

As NΛ is independent of ω

WΛ(ω | +) =
exp{−2βJ FΛ(ω)}∑
ωΛ

exp{−2βJ FΛ(ω)}
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Contour representation

I Place a plaquette (segment) orthogonally at the midpoint
of each frustrated bond

I These plaquettes form a family of disjoint closed connected
surfaces (curves)

I Each such closed surface is a contour
I Contours are disjoint: γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅
I Each ω is in one-to-one correspondence with a compatible

family of contours Γ(ω)
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Contour polymer model

exp
{
−2βJ FΛ(ω)

}
= exp

{
−

∑
γ∈Γ(ω)

2βJ |γ|
}

=
∏

γ∈Γ(ω)

zγ

with zγ = exp{−2βJ |γ|}. Hence

WΛ(ω | +) =
1

ΞΛ

∏
γ∈Γ(ω)

zγ

with

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Λn

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}
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Geometrical polymer models

Polymers of previous two examples are defined by parts of a set
These are the original polymer models of Gruber and Kunz
Formally, geometrical polymer models are defined by:

I A set V
I A family P of finite subsets of V
I Activity values (zγ)γ∈V
I The relation γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅

More generally, V can be the vertex set of a graph and
I Polymers are defined through connectivity properties
I Compatibility determined by graph distances
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Ratios of partition functions

Physicists are obsessed with (logs of) partition functions
Three reasons why they are right:

I Probabilities of cylindrical events are ratios of partition
functions

I So are characteristic and moment-generating functions
I (Complex) zeros of partition functions related to phase

transitions, coloring problems, etc
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Cylindrical polymer events

Let
I ProbΛ the basic measure in Λ
I γ1, . . . , γk mutually compatible polymers in Λ

Then

ProbΛ

(
{γ1, . . . , γk are present}

)
= zγ1 · · · zγk

ΞΛ\{γ1,...,γk}∗

ΞΛ

where

ΞΛ\{γ1,...,γk}∗ = partition function of polymers in Λ
compatible with γ1, . . . , γk
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Characteristic/moment-generating functions

Let α : P → R and

SΛ(γ1, . . . , γn) =
n∑

i=1

α(γi)

for {γ1, . . . , γn} ⊂ Λ. Hence EΛ

(
eξ SΛ

)
equals

1
ΞΛ(z)

∑
{γ1,...,γn}⊂Λ

zγ1 · · · zγn eξ [α(γ1)+···+α(γn)]
∏
j<k

11{γj∼γk}

That is,

EΛ

(
eξ SΛ

)
=

ΞΛ(zξ)
ΞΛ(z)

with zξ
γ = zγ eξα(γ)
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Zeros and phase transitions

For (translation-invariant) stat-mech models

f(β,h) = lim
Λ→L

1
|Λ|

logZσ
Λ

exists and is independent of the boundary condition σ

Key information: smoothness as function of β and h

“Functions should be analytic unless there is a good reason”

Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f :
I Zeros of ZΛ Λ-uniformly away from (β,h)
I Λ-independent radius of analyticity of 1

|Λ| logZΛ
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Alternative lines of attack

Physicist:
Control Ξ through expansion techniques −→ cluster expansions

I Genesis/reincarnations: Mayer, virial, high-temperature,
low-density, . . . expansions

I Not everybody’s cup of tea
I Involves algebraic and graph theoretical considerations
I Less natural for purely probabilistic studies (analyticity?)

Probabilists:
Models with exclusions = invariant measures of point processes

I Weaker results (no analyticity!) but wider applicability
I Can use probabilistic techniques (coupling!)
I Leads to (perfect) simulation algorithms
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Cluster expansions

The idea is to write the polynomials in (zγ)γ∈P

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Λn

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}

as formal exponentials of another formal series

ΞΛ(z) F= exp
{ ∞∑

n=1

1
n!

∑
(γ1,...,γn)⊂Λn

φT (γ1, . . . , γn) zγ1 . . . zγn

}
The series between curly brackets is the cluster expansion

I φT (γ1, . . . , γn): Ursell or truncated functions (symmetric)
I Clusters: Families {γ1, . . . , γn} s.t. φT (γ1, . . . , γn) 6= 0
I Clusters are connected w.r.t. “�”
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Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios

Substracting cluster expansions:

ΞΛ

ΞΛ\{γ0}

F= exp
{ ∞∑

n=1

1
n!

∑
(γ1,...,γn)⊂Λn

∃i: γi=γ0

φT (γ1, . . . , γn) zγ1 . . . zγn

}

Slightly more convenient series:

∂

∂zγ0

log ΞΛ
F= 1+

∞∑
n=1

1
n!

∑
(γ1,...,γn)⊂Λn

φT (γ0, γ1, . . . , γn) zγ1 . . . zγn

Two strategies to deal with this series: classical and inductive
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Classical cluster-expansion strategy

Find convergence conditions for the series

Πγ0(ρ) := 1 +
∞∑

n=1

1
n!

∑
(γ1,...,γn)∈Pn

∣∣φT (γ0, γ1, . . . , γn)
∣∣ ργ1 . . . ργn

for ργ > 0. Then,

Cluster expansions converge absolutely for |zγ | ≤ ργ uniformly
in Λ (complex valued allowed!)

This determines a region of analyticity R common for all Λ

Within this region

ΞΛ

ΞΛ\{γ0}
≤ |zγ0 | Πγ0(|z|)
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Consequences

I Zeros of all ΞΛ outside R (no phase transitions!)
I Within R

I Explicit series expressions for free energy and correlations
I Explicit δ-mixing:∣∣∣∣ Prob({γ0 , γx})

Prob({γ0}) Prob({γx})
− 1

∣∣∣∣ =
∣∣∣eF [d(γ0,γx)] − 1

∣∣∣
with F (d) → 0 as d→∞

I Central limit theorem
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Free energy expansions

For geometrical translation-invariant polymers,

f = lim
Λ

1
|Λ|

log ΞΛ

=
∞∑

n=1

1
n!

∑
(γ1,...,γn) : 0∈∪γi

φT
n (γ1, . . . , γn) zγ1 . . . zγn

As

φT (γ) = 1 , φT (γ, γ′) =
{
−1 if γ � γ′

0 otherwise

f =
∑
γ30

zγ −
1
2

∑
γ�γ′

zγ zγ′ +O(|z|3)
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Correlations

ProbΛ

(
{γ0}

)
= zγ0

ΞΛ\{γ0}∗

ΞΛ
= zγ0

exp
{∑

C⊂Λ
C∼γ0

W T (C)
}

exp
{∑

C⊂Λ
W T (C)

}
Hence

Prob
(
{γ0}

)
= zγ0 exp

{
−

∞∑
n=1

1
n!

∑
(γ1,...,γn)
∃i:γi�γ0

φT (γ0, γ1, . . . , γn) zγ1 . . . zγn

}
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Mixing properties

ProbΛ({γ0 , γx})
ProbΛ({γ0}) ProbΛ({γx})

=
exp

{
−

∑
C⊂Λ

C�{γ0 γx}
W T (C)

}
exp

{
−

∑
C⊂Λ
C�γ0

W T (C)
}

exp
{
−

∑
C⊂Λ
C�γx

W T (C)
}

= exp
{ ∑

C⊂Λ
C�γ0
C�γx

W T (C)
}

= eF [d(γ0,γx)]
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Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on z defining a region R such that

ΞΛ\{γ0}∗ 6= 0 in R =⇒ ΞΛ 6= 0 in R

for all Λ, γ0 6∈ Λ
I Expansion neither needed nor obtained

(no-cluster-expansion method)
I A posteriori: expansion converges in R −→ above concl.

Questions raised

I Why the alternative approach lead to better results?
I Can it be interpreted in terms of the classical approach?

Answer: Classical theory revisited
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Associated polymer models

A model has an associated polymer model if partition ratios are
the same

Equivalently,

Zmodel
Λ (param.) = constΛ Ξpolymer

Λ (z)

(constΛ ∼ a|Λ|). Will see two examples

Useful observation
If S finite set and (ϕa)a∈S , (ψa)a∈S complex-valued:∏

a∈S

[
ψa + ϕa] =

∑
A⊂S

∏
a∈A

ϕa

∏
a∈S\A

ψa

[
∏
∅ ≡ 1]
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Potts model

L any (eg. Zd), E = {1, . . . , q}, F =discrete, µE =counting

φB(ω) =
{
−Jx y

(
δωxωy − 1

)
if B = {x, y} n.n.

0 otherwise

I φ{x,y} = J if ωx 6= ωy, 0 otherwise
I If q = 2, Potts=Ising

ZPotts
Λ (β, q) =

∑
ωΛ

∏
{x,y}⊂Λ

eβJx y(δωxωy−1)
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The FK trick

Crucial observation:

eβJx y(δωxωy−1) = δωxωy + e−βJx y(1− δωxωy)
= (1− px y) + px y δωxωy

with px y = 1− e−βJx y . Hence

ZPotts
Λ (β, q) =

∑
ωΛ

∏
{x,y}⊂Λ

[
(1− px y) + px y δωxωy

]
=

∑
ωΛ

∑
B⊂B

∏
{x,y}∈B

δωxωy

∏
{x,y}∈B

px y

∏
{x,y}6∈B

(1− px y)

(B = bonds)
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The FK expansion

As ∑
ωΛ

∏
{x,y}∈B

δωxωy = qC(B)

with C(B) = # connected components of B,

ZPotts
Λ (β, q) =

∑
B⊂B

qC(B)
∏

{x,y}∈B

px y

∏
{x,y}6∈B

(1− px y)

I q = 1: regular (independent) bond percolation in Zd

I q > 1: dependent percolation due to qC(B)
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FK model

ZPotts
Λ (β, q) =

[ ∏
{x,y}∈B

(1− px y)
] ∑

B⊂B
qC(B)

∏
{x,y}∈B

px y

1− px y

=
[ ∏
{x,y}∈B

(1− px y)
]
ZFK

Λ (q,v)

with
ZFK

Λ (q,v) =
∑
B⊂B

qC(B)
∏

{x,y}∈B

vx y

and
vx y =

px y

1− px y
= eβ Jx y − 1
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

I Each B defines a graph G = (VB,B)
I Let Gi = (Vi,Bi), i = 1, . . . , k connected components

I The vertex sets are disjoints: Vi ∩ Vj = ∅ if i 6= j
I The sets of bonds Bi are such that each Gi is connected

Furthermore

C(B) = k + # isolated points

= k + |Λ| −
∑

|Vi|

= |Λ| −
∑

(|Vi| − 1)
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I The sets of bonds Bi are such that each Gi is connected

Furthermore

C(B) = k + # isolated points

= k + |Λ| −
∑

|Vi|

= |Λ| −
∑

(|Vi| − 1)
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High-q expansion

Then

ZFK
Λ (q,v)
q|Λ|

=
∑
k≥0

1
k!

∑
(V1,...,Vk)∈Λk

disjoints

k∏
i=1

[
q−(|Vi|−1)

∑
Bi⊂BVi

(Vi,Bi) conn.

∏
{x,y}∈Bi

vx y

]

= ΞFK
Λ (z)

FK geometrical polymer system: P = {V ⊂⊂ L},

zV = q−(|V |−1)
∑

B⊂BV
(V,B) connected

∏
{x,y}∈B

vx y

decreases as q →∞ (or as β → 0)

Corresponding cluster expansion = high-q (high-T ) expansion
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Chromatic polynomials

Given a graph G =
(
V (G), E(G)

)
:

PG(q) = # ways of properly coloring G with q colors

“properly” = adjacents vertices have different colors

If ω : V (G) → {1, . . . , q} denote colorings

PG(q) =
∑
ω

∏
{x,y}∈E(G)

[
1− δωx ωy

]
Introduced by Birkhoff (1912) to determine

χG = min
{
q : PG(q) > 0

}
chromatic number = minimal q for a proper coloring
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Tutte polynomial

Slight generalization: (−1) → vx y

PG(q,v) =
∑
ω

∏
{x,y}∈E(G)

[
1 + vx y δωx ωy

]

I Dichromatic polynomial
I Dichromate
I Whitney rank function
I Tutte polynomial

For us
PG(q,v) = ZFK

Λ (q,v) = q|Λ| ΞFK
Λ (z)

This identity proves that PG(q,v) is a polynomial in q
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Chromatic numbers and cluster expansions

If Jx y < 0 (antiferromagnetic Potts model)

vx y = eβJx y − 1 −−−→
β→∞ − 1

Hence
PG(q) = ZFK

Λ (q,−1) = q|Λ| ΞFK
Λ (z−)

with
z−V = q−(|V |−1)

∑
B⊂BV

(V,B) conn.

(−1)|B|

Region free the zeros of PG(q) → bound on χG
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