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The setup

Goal: To study systems of objects constrained only by a
“non-overlapping” condition

Countable family P of objects: polymers, animals, ...,
characterized by

» An incompatibility constraint:

incompatible

vy
~ compatible

Loy e

For simplicity: each polymer incompatible with itself
(y =7, VyeP)
> A family of activities z = {2, }ep € CP.
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The basic (“finite-volume”) measures
Defined, for each finite family A C P, by weights
1
Wal{m 72 mb) = gy 2o 2 [ oy
=a(2) i<k

for n >1 Y1525 -3 0 € A7 and WA(Q) = 1/EA7
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1
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The basic (“finite-volume”) measures
Defined, for each finite family A C P, by weights
1
Wa({r92:-m}) = = oy Rt A H Liyjmm}
2a(2) ,
i<k
forn >171,7%,...,7 € A, and Wy (0) = 1/=,, where

1
Er(z) = 1—}—2; Z z,ylzw...z%HIl{WN%}

n>1 " (y1,.,7n) EAT i<k

The questions:

» Existence of the limit A — P (“thermodynamic limit”)

» Properties of the resulting measure (mixing properties,
dependency on parameters,. .. )
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Motivation

Immediate:
» Physics: Grand-canonical ensemble of polymer gas with
activities z, and hard-core interaction

» Statistics: Invariant measure of point processes with
not-overlapping grains and birth rates z,

Less immediate:
» Statistical mechanical models at high and low temperatures
are mapped into such systems

» More generally: most perturbative arguments in physics
involve maps of this type (choice of the “right” variables)

» Zeros of the partition functions =, relate to phase
transitions (sphere packing, chromatic polynomials,. .. )
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Graph-theoretical framework

Equivalently, consider the interaction graph G = (P, &)
Unoriented graph with:
» Vertices = polymers

» Edges = incompatible pairs

vy it {y,4}e€ or e (1)

(contrast!)

» & is arbitrary; vertices can be of infinite degree (polymers
incompatible with infinitely many other polymers)

» For simplicity: each polymer incompatible with itself
(Y=, Vv eP)
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Example: Single-call loss networks

Definition

» P = finite subsets of Z? —the calls
> A call y is attempted with Poissonian rates z,
» Call succeeds if it does not intercept existing calls

» Once established, calls have an exp(1) life span

Examples II
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Example: Single-call loss networks

Definition

» P = finite subsets of Z? —the calls
> A call y is attempted with Poissonian rates z,
» Call succeeds if it does not intercept existing calls

» Once established, calls have an exp(1) life span

Remarks
» Basic measures are invariant for the finite-region process
(Y= q' =Ny #0)
» Thermodynamic limit: infinite-volume process

» Discrete point process with hard-core conditions
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Statistical mechanical lattice models

Their ingredients are:

» Lattice L countable set of sites (e.g. Z%)

> Single-site space (E,F, pg) with natural measure structure
(e.g. counting measure if E countable, Borel if E C R%)

» Configuration space Q = E™, with product measure



Genesis Examples 1 Partitions Cluster expansions Examples II

Statistical mechanical lattice models

Their ingredients are:

» Lattice L countable set of sites (e.g. Z%)

> Single-site space (E,F, pg) with natural measure structure
(e.g. counting measure if E countable, Borel if E C R%)

» Configuration space Q = E™, with product measure

» Interaction ® = {¢p : B CC L} where ¢p = ¢p(wpn).
[Bond: B such that ¢p # 0]

» Hamiltonians: For A CC L, and boundary condition o

Hpy(wlo) = ZgbBwAa

BCA
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Statistical mechanical measures

Their finite-volume versions are defined by weights

exp{—fHj(w|0)}
Z3

Walw|o) =

with

23 = [ ewl-pHaw | o)) Que(de.)

TEA

(8 = inverse temperature)
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Ising model at low temperatures
L =7% E = {-1,1}, F =discrete, g =counting

| —Jwuwy if B={z,y} n.n.
op(w) = { 0 otherwise
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Ising model at low temperatures
L =7% E = {-1,1}, F =discrete, g =counting

| —Jwywy if B={z,y} nn.
op(w) = { 0 otherwise

Call a bond B = {z,y} frustrated if wyw, = —1

HA(w ‘ +) = QJFA((,U) — JNyp ;

Fa(w) = #{B frustrated : BN A # ()}
Ny = #{B:BnA#0}

As N, is independent of w

exp{—20J Fp(w)}
2wy exXP{—28J Fa(w)}

Wialw | +) =
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Contour representation

» Place a plaquette (segment) orthogonally at the midpoint
of each frustrated bond

» These plaquettes form a family of disjoint closed connected
surfaces (curves)

» Each such closed surface is a contour



Genesis Examples 1 Partitions Cluster expansions Examples II

Contour representation

» Place a plaquette (segment) orthogonally at the midpoint
of each frustrated bond

» These plaquettes form a family of disjoint closed connected
surfaces (curves)

» Each such closed surface is a contour

» Contours are disjoint: v~ <= yN~' =1

» Each w is in one-to-one correspondence with a compatible
family of contours I'(w)
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Contour polymer model

exp{-20] Fy(w)} = ep{— 3 287 hl}

veT (w)

- II »

vel'(w)

with z, = exp{—26J |y|}.
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Contour polymer model

exp{-20] Fy(w)} = ep{— 3 287 hl}

Y€l (w)
- I =
vel(w)
with z, = exp{—24J |y|}. Hence
1
Walw|+) = =— Zy
~herw)

with

1
Ea(z) =1+ Z ) Z 2oy By - o By H Limm)

n>1 " (Y1,e7n) EAT i<k
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Polymers of previous two examples are defined by parts of a set
These are the original polymer models of Gruber and Kunz
Formally, geometrical polymer models are defined by:

> AsetV

» A family P of finite subsets of V

> Activity values (zy)yev

» The relation v ~ v <= yN~' =0
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Geometrical polymer models

Polymers of previous two examples are defined by parts of a set
These are the original polymer models of Gruber and Kunz
Formally, geometrical polymer models are defined by:

> AsetV

» A family P of finite subsets of V

> Activity values (zy)yev

» The relation vy ~ 9 <= yN~+' =10
More generally, V can be the vertex set of a graph and

» Polymers are defined through connectivity properties

» Compatibility determined by graph distances
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Physicists are obsessed with (logs of) partition functions
Three reasons why they are right:

» Probabilities of cylindrical events are ratios of partition
functions

» So are characteristic and moment-generating functions
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Ratios of partition functions

Physicists are obsessed with (logs of) partition functions
Three reasons why they are right:

» Probabilities of cylindrical events are ratios of partition
functions

» So are characteristic and moment-generating functions

» (Complex) zeros of partition functions related to phase
transitions, coloring problems, etc
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Cylindrical polymer events

Let
» Prob, the basic measure in A

> 1,...,7 mutually compatible polymers in A
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Cylindrical polymer events

Let

» Prob, the basic measure in A

> 1,...,7 mutually compatible polymers in A
Then

Proby ({71, .o,V are present}) = Zy, 2y %A%}*
where

EA\{r1,....y}* = bartition function of polymers in A
compatible with ~v1,..., v
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Characteristic/moment-generating functions

Let a: P — R and

n

SA(Ys - m) = > aly)

=1

for {m,....,m} C A
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Characteristic/moment-generating functions

Let a: P — R and

n

SA(Ys - m) = > aly)

1

=

for {v1,...,7} C A. Hence Ep (eE SA) equals

1
EA(Z) Z Z’Yl PN Z’Yn eg [a(’71)+ +Oé('7n)] H ]]‘{"/]N"/k}
{717---7'Yn}CA j<k
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Characteristic/moment-generating functions

Let a: P — R and

n

SA(Ys - m) = > aly)

1

=

, Y} C A. Hence Ep (eE SA) equals

2, o la()++a(ym)] H ]1{’7j~’7k}

1 Z
: Z’yl .. ’y
j<k

=a2) L s

for {~1,...

That is,
EA(eésA) = Ea(z") with 2§ = 2, (V)
Ea(2) T
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Zeros and phase transitions

For (translation-invariant) stat-mech models

F(B.h) = lim

A—L |A]

log Z%

exists and is independent of the boundary condition o
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Zeros and phase transitions

For (translation-invariant) stat-mech models

F(B.h) = lim

log Z§
A—L |A] &2A
exists and is independent of the boundary condition o
Key information: smoothness as function of g and h

“Functions should be analytic unless there is a good reason”
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Zeros and phase transitions
For (translation-invariant) stat-mech models

F(B.h) = lim

A A log Z%
exists and is independent of the boundary condition o

Key information: smoothness as function of g and h
“Functions should be analytic unless there is a good reason”

Loss of analyticity = phase transition (of some sort)
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Zeros and phase transitions

For (translation-invariant) stat-mech models

f(B,h) = lim % log Z§

A—L |A]

exists and is independent of the boundary condition o

Key information: smoothness as function of g and h
“Functions should be analytic unless there is a good reason”
Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f:

» Zeros of Z) A-uniformly away from (3, h)

» A-independent radius of analyticity of \T1| log Zx
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Alternative lines of attack

Physicist:
Control = through expansion techniques — cluster expansions

» Genesis/reincarnations: Mayer, virial, high-temperature,
low-density, ...expansions

» Not everybody’s cup of tea
» Involves algebraic and graph theoretical considerations

» Less natural for purely probabilistic studies (analyticity?)

Probabilists:
Models with exclusions = invariant measures of point processes

» Weaker results (no analyticity!) but wider applicability
» Can use probabilistic techniques (coupling!)

» Leads to (perfect) simulation algorithms
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Cluster expansions

The idea is to write the polynomials in (z),ep

1
Er(z) = 1—}—2; Z z,ylzw...z%HIlth%}

n>1 T (Y1, yn) EAT Jj<k
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Cluster expansions

The idea is to write the polynomials in (z),ep
— 1
Ea(z) =1+ Z nl Z A Ey e B H Ly mm
n>1"" (Y1,0yn) EAT i<k
as formal exponentials of another formal series
F 1
Eaz) L oep{d > T ) s )
n=1" (y1,....;7n)CA"

The series between curly brackets is the cluster expansion
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Cluster expansions

The idea is to write the polynomials in (z),ep
_ 1
Ea(z) =1+ Z nl Z A Ey e B H Ly mm
n>1 (Y15-7n ) EA™ i<k

as formal exponentials of another formal series

oo
- F 1
Ea(z) = exp{ — Z qu(vl,...,fyn) 2y ...z%}
n=1"" (y1,...;72) CA"
The series between curly brackets is the cluster expansion
> o1 (y1,...,vn): Ursell or truncated functions (symmetric)
> Clusters: Families {v1,...,7m} s.t. 7 (V1,...,7n) # 0

» Clusters are connected w.r.t. “~<”
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Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios

Substracting cluster expansions:

—_ o0
=A F 1
— = exp{ ] g (ﬁT('yl,...,’yn)zm...z%}

=A\{vo} n=1"" (Y130+5¥n ) CAT
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Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios
Substracting cluster expansions:

—_

o0
=A F 1
— = exp{g ] g (ﬁT(’yl,...,’yn)zm...z%}
n=1""

EA\{r0}

Slightly more convenient series:

0 . F <1
WIOg:A = 1+ZE Z ¢T(707’717"'57n) By e Ry
o n=1 ' ('Ylv"w’Yn)CAn

Two strategies to deal with this series: classical and inductive
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Classical cluster-expansion strategy

Find convergence conditions for the series

H’YO = 1+Z Z }¢T(707'717"'77n)‘ Pm---ﬂ%

(’Yl 5 77n)€,Pn
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Classical cluster-expansion strategy

Find convergence conditions for the series

H’yo = 1+Z Z }(bT(’YOalylv"':ﬂYn)‘ Pyi -+ Pyn

" (Vs EPT
for p, > 0. Then,

Cluster expansions converge absolutely for |zy| < p, uniformly
in A (complex valued allowed!)

This determines a region of analyticity R common for all A
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Classical cluster-expansion strategy

Find convergence conditions for the series

H’yo = 1+Z Z }(bT(’YOalylv"':ﬂYn)‘ Pyi -+ Pyn

" (V1 ym) EPT

for p, > 0. Then,

Cluster expansions converge absolutely for |zy| < p, uniformly
in A (complex valued allowed!)

This determines a region of analyticity R common for all A

Within this region

—

ZA
=M\ {70}

< ’Z“{0| H’YO(|Z|)
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» Zeros of all =5 outside R (no phase transitions!)
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Consequences

» Zeros of all =5 outside R (no phase transitions!)
» Within R

» Explicit series expressions for free energy and correlations
» Explicit -mixing:

Prob({10, 72 }) _1’ _ ‘GF[dmm_l‘
Prob({7o}) Prob({~.})

with F'(d) — 0 as d — o
» Central limit theorem
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Free energy expansions

For geometrical translation-invariant polymers,

1
= lim— log=
/ NA] BT

o
1
- Zﬁ Z ¢£(71?"'7’7n)zf71-..2fyn

n=1"" (y1,....7) : 0EU;
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Free energy expansions
For geometrical translation-invariant polymers,
f li L log =
= lim —log=
N g =A

1
ZTT Z ¢5(71,---,'yn)271...z%

n=1"" (y1,...,7) : 0€Uy;

TN _ T n_J —1 iy
(=1, ¢ (%fy)_{ 0 otherwise
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Free energy expansions
For geometrical translation-invariant polymers,
f li L log =
= lim —log=
N g =A

1
ZTT Z ¢5(71,---,’yn)271...z%

n=1"" (y1,...,7) : 0€Uy;

TN _ T n_J —1 iy
(=1, ¢ (%fy)_{ 0 otherwise

F= Y5 Y ez + 00

v30 yooy!
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Correlations

—_
—
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Correlations

exp{ZCCA WT(C)}

C~70

exp{ s WT(C)}

—_
—

EA *
ProbA({fyo}) = ZWO¥ = 2y,
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Correlations

exp{z cca WT(C)}

C~o

exp{ e, WT(O) |

—_
—

T for e
ProbA({fyO}) - ZWo% = 2,

Hence
Prob({y})

=1
= Zy eXp{_ZH
n=1

Z DT (Y0, V15 - -+ > ) 2y - .z%}
Tm
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Mixing properties

Proba ({70, 72 })
Proby ({70}) Proba ({7, })
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Mixing properties

Proba ({70, 7z})

Proby ({70}) Proba ({7, })

exp{— > cea WT(C)}

_ ~{v0 Y& }
- ep{-Tea WT(CC)} pr{—zm WI(e)}
= exp Z wT(e)

{ :
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Inductive strategy (Kotecky-Preiss, Dobrushin)
Find conditions on z defining a region R such that
E’A\{’YO}* #OIHR - EA#OinR

for all A, vo € A
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Inductive strategy (Kotecky-Preiss, Dobrushin)

Find conditions on z defining a region R such that
E’A\{’YO}* #OIHR - EA#OinR

for all A, vo € A

» Expansion neither needed nor obtained
(no-cluster-expansion method)

» A posteriori: expansion converges in R — above concl.
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Inductive strategy (Kotecky-Preiss, Dobrushin)

Find conditions on z defining a region R such that
E’A\{’YO}* #OIHR - EA#OiHR

for all A, vo € A

» Expansion neither needed nor obtained
(no-cluster-expansion method)

» A posteriori: expansion converges in R — above concl.
Questions raised

» Why the alternative approach lead to better results?

» Can it be interpreted in terms of the classical approach?
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Inductive strategy (Kotecky-Preiss, Dobrushin)

Find conditions on z defining a region R such that
E’A\{’YO}* #OIHR - EA#OiHR

for all A, vo € A

» Expansion neither needed nor obtained
(no-cluster-expansion method)

» A posteriori: expansion converges in R — above concl.
Questions raised

» Why the alternative approach lead to better results?

» Can it be interpreted in terms of the classical approach?

Answer: Classical theory revisited
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Associated polymer models
A model has an associated polymer model if partition ratios are
the same
Equivalently,

Z}\mdd(param.) = consty EROlymer(z)

(constp ~ al*). Will see two examples
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Associated polymer models
A model has an associated polymer model if partition ratios are
the same
Equivalently,

Z}\mdel(param.) = consty EKOlymer(z)

(constp ~ al*). Will see two examples

Useful observation
If S finite set and (¢q)acs, (Ya)acs complex-valued:

[Tla+9d = D> T1ee II e

acs ACSacA  acS\A
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting

_ _ny (5wzwy - 1) if B= {JT,y} n.n.
opWw) = { 0 otherwise
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting
b5(w) = { —Jzy (Owpw, — 1) if B={z,y} n.n.

0 otherwise

> Oleyy = J if we # wy, 0 otherwise
» If ¢ = 2, Potts=Ising
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting
b5(w) = { —Jzy (Owpw, — 1) if B={z,y} n.n.

0 otherwise

> Oleyy = J if we # wy, 0 otherwise
» If ¢ = 2, Potts=Ising

ZKOtts(,B, Q) Z H ﬂJzy Suwgwy —1)

WA {z,y}CA
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The FK trick

Crucial observation:

e/BJz y(éwzwy _1) = 5szy + e_IBJz Y (1 - 60J$Wy)
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The FK trick

Crucial observation:

eﬁJz y((swquy _1) - 5wny + e_IBJz Y (1 - 6way)

(1 - pzy) +pa:y 5w1wy

with py, =1 — e Pley,
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The FK trick

Crucial observation:
eﬂJzy((swquy—l) = (5wxwy + e_ﬂJzy(]‘ - 6wacwy)
(1 - pmy) + Pxy 5wlwy

with py, =1 — e #Jev. Hence

WA {az,y}CA
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The FK trick

Crucial observation:

eﬁJzy(éwzwy_l) = (5wquy + e_ﬂJzy(l - 6Wx“’y)
(1 - pry) + Pay 5W1Wy

with py, =1 — e #Jev. Hence

ZEOttS(67Q) = Z H [1_pxy +pxy5wzwy}

wa {z,y}CA
- Z Z H Ouwguwr H Day H (1 = pay)
wa BCB{zy}eB {zy}eB  {z,y}¢B

(B = bonds)
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The FK expansion

Z H 6WZCL)y = qC(B)

wp {z,y}eB
with C(B) = # connected components of B,

ZPotts 57 Z qC(B H Dy H (1 _pacy)

BcCB {z,y}eB {z,y}¢B

» ¢ = 1: regular (independent) bond percolation in Z?

» ¢ > 1: dependent percolation due to ¢©(B)
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FK model

Z/Izotts(l&q) — H (l—pxy):| ZqC(B) H :lfgchy

= [ 11 0-p)] ZE5Ga0)

{z,y}eB
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FK model

Z}zotts(l&q) — H (l—pwy):| ZqC(B) H :lfx;?lxy

= [ 11 0-p)] ZE5Ga0)

{z,y}eB
with
Zia0) = 32 a™® ] vy
BcB {z,y}eB
and
_ Pxy eBley _q

’l} =
Ty 1_pxy
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vg, B)
» Let G; = (V;, B;), i =1,...,k connected components
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vg, B)
» Let G; = (V;, B;), i =1,...,k connected components

» The vertex sets are disjoints: V; N V; =0 if i # j
» The sets of bonds B; are such that each G; is connected
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vg, B)
» Let G; = (V;, B;), i =1,...,k connected components

» The vertex sets are disjoints: V; N V; =0 if i # j
» The sets of bonds B; are such that each G; is connected

Furthermore
C(B) = k+ # isolated points
= k+[A[=) |V
= A=) (Vil-1)



Genesis Examples I Partitions Cluster expansions Examples II

Then

Z3%(q,v)

I

High-g expansion

SR VN | (TR ol | )

k>0 (V1,...,Vp)eak i=1 BiCBy; {z,y}eB;
disjoints (V;,B;) conn.
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High-g expansion

Then

Z¥K(q,v 1 i (V|-
D D v | ([EE ol |

k>0 (V1,...,Vi)eak i=1 B;CBy, {z,y}€B;
disjoints (V;,B;) conn.

FK geometrical polymer system: P = {V cC L},

wo=qg DS I v

BCBy z,yteB
(V,B) connected { 7y}

decreases as ¢ — oo (or as § — 0)

Corresponding cluster expansion = high-q (high-T') expansion
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Chromatic polynomials

Given a graph G = (V(G), E(Q)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors
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Chromatic polynomials
Given a graph G = (V(G), E(G)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors

Ifw:V(G) — {1,...,q} denote colorings

Paa) = >, I [1-duu)]

w {zy}eE(G)
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Chromatic polynomials
Given a graph G = (V(G), E(G)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors

Ifw:V(G) — {1,...,q} denote colorings

Paa) = >, I [1-duu)]

w {z,y}€E(G)
Introduced by Birkhoff (1912) to determine
Xg = min{q : Pa(q) > O}

chromatic number = minimal ¢ for a proper coloring
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Tutte polynomial

Slight generalization: (—1) — vay

Pa(q,v) = Z H [1 —i—vxyéwxwy]

w {zy}ek(G)

Examples II
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Tutte polynomial

Slight generalization: (—1) — vay

Pa(q,v) = Z H [1 + Ua:y(swxwy]

w {zy}ek(G)

» Dichromatic polynomial
» Dichromate
» Whitney rank function

» Tutte polynomial

Examples II
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Tutte polynomial

Slight generalization: (—1) — vay

= Z H {1—1—1};,;?,5%%]

w {zy}ek(G)

» Dichromatic polynomial
» Dichromate
» Whitney rank function

» Tutte polynomial

For us
Pa(g,v) = Zy%(g,v) = ¢ ER"(2)
This identity proves that Pg(g,v) is a polynomial in ¢
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Chromatic numbers and cluster expansions

If J.y < 0 (antiferromagnetic Potts model)

=ePev 11— —1

Vzy [B—00
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Chromatic numbers and cluster expansions

If J.y < 0 (antiferromagnetic Potts model)

ny:eﬁjwy_1—> -1

f—00
Hence
Polq) = Z§%(q,—1) = ¢ =5 (z7)
with
z, = q7(|V|—1) Z (_1)\BI
BCBy
(V,B) conn.

Region free the zeros of P;(q) — bound on x¢
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