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Certain matrix solutions of the braid or Yang-Baxter equations
lead to braided categories, knot invariants, quantum groups
and other important constructions. However, these equations
are also very interesting at the level of set maps
r : X×X → X×X, where X is a set and r is a bijection, a line of
study proposed by Drinfeld (1990)



Set theoretic solutions extend to special linear solutions
but also lead to

I a great deal of combinatorics - group action on X, cyclic
conditions,

I matched pairs of groups, matched pairs of semigroups
I semigroups of I type with a structure of distributive lattice
I special graphs
I algebras with very nice algebraic and homological

properties such as being:
I Artin-Schelter regular rings;
I Koszul;
I Noetherian domains;
I with PBW k-bases;
I with good computational properties -the theory of

noncommutative Groebner bases is applicable.



YBE, QYBE and set-theoretic YBE

Let V be a vector space over a field k, R be a linear
automorphism of V ⊗V.

I R is a solution of YBE if R12R23R12 = R23R12R23,
I R is a solution of QYBE if R12R13R23 = R23R13R12,

where both equalities hold in V ⊗V ⊗V, and Rij means R
acting on the i-th and j-th component.

I Let X 6= ∅ be a set. A bijective map r : X×X −→ X×X is
a set-theoretic solution of YBE, if the braid relation

r12r23r12 = r23r12r23

holds in X×X×X, r12 = r× idX, r23 = idX × r.
In this case (X, r) is called a braided set.

I Each set-theoretic solution of YBE induces naturally a
solution to the YBE and QYBE.



Quadratic sets (X,r)

A quadratic set (X, r) is a nonempty set X with a bijective map
r : X×X −→ X×X. The formula

r(x, y) = (xy, xy).

defines a ”left action” L : X×X −→ X, and a ”right action”
R : X×X −→ X, on X as:

Lx(y) = xy, Ry(x) = xy for all x, y ∈ X.

I r is nondegenerate, if Rx and Lx are bijective for each x ∈ X,
i.e. Lx,Rx ∈ Sym(X);

I r is square-free if r(x, x) = (x, x) for all x ∈ X;
I (X, r) is a braided set if r12r23r12 = r23r12r23;
I A braided set (X, r) with r involutive is called a symmetric

set.



Associated algebraic objects to (X, r)

These are generated by X and with quadratic defining relations
< = <(r):

xy = zt ∈ < ⇐⇒ r(x, y) = (z, t).

I The monoid S = S(X, r) = 〈X;<(r)〉;
I The group G = G(X, r) = gr〈X;<(r)〉;
I The k-algebra A = A(k, X, r) = k〈X〉/(<(r)), where k is a

field
I The group of left action G = G(X, r) defined as the

subgroup L(G(X, r)) of Sym(X).



Conditions l1,r1,lr3 and the group actions

(X, r) is a braided set iff the following three conditions hold for
all x, y, z ∈ X.

I l1 : x(yz) = xy(xy
z),

I r1 : (xy)z = (x
yz)yz

,

I lr3 : (xy)(xy
(z)) = ((x)

yz)(yz),
When (X, r) is nondegenerate, l1 implies that G = G(X, r) acts
on X on the left, respectively, r1 implies a right action of G on X.
Let L : G(X, r) −→ Sym(X) be the group homomorphism
defined via the left action.
G = G(X, r) will denote the subgroup L(G(X, r)) of Sym(X).

I G(X, r) = {idX} iff (X, r) is the trivial solution.



Example of a nondegenerate square-free solution of mp
level 2

Let X = {x1, x2, x3, x4, b, c}, define r as:

r(b, x1) = (x2, b) r(b, x2) = (x1, b) r(b, x3) = (x4, b)
r(b, x4) = (x3, b) r(c, x1) = (x3, c) r(c, x3) = (x1, c)
r(c, x2) = (x4, c) r(c, x4) = (x2, c), r(b, c) = (c, b)
r(c, b) = (b, c) r(xj, xi) = (xi, xj), 1 ≤ i, j ≤ 4.

< consists of 15 defining relations

bx1 = x2b bx2 = x1b bx3 = x4b bx4 = x3b
cx1 = x3c cx3 = x1c cx2 = x4c cx4 = x2c
xjxi = xixj, 1 ≤ i < j ≤ 4, cb = bc.



A square-free nondeg. symmetric set (X, r) is uniquely
defined via the left action

In our example, r is uniquelly defined via

Lb = (x1x2)(x3x4), Lc = (x1x3)(x2x4), Lxi = idX, 1 ≤ i ≤ 4

(Rz = L−1
z always hold for nondegenerate square-free

symmetric sets).
Then G(X, r) = 〈Lb〉 × 〈Lc〉, so it is isomorphic to the Klein’s
group Z2 ×Z2. Direct computations show that the set of
automorphisms consists of the following eight elements:

idX, τ1 = (bc)(x2x3), τ2 = (bc)(x1x2x4x3),
τ3 = (bc)(x1x3x4x2), τ4 = (bc)(x1x4), Lb, Lc, Lb ◦ Lc.

Furthermore, one has

Aut(X, r) = gr〈τ1, τ2 | τ2
1 = 1, τ4

2 = 1, τ1τ2τ−1
1 = τ3

2 〉 ≈ D4.

Aut(X, r) is a proper subgroup of NorSym(X)(G).
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\ is not associative, mpl(Z) = 3

(Z, r) = (X1\X2)\X3) = (X2\X1)\X3).
(Z, r) is an YB extension of Y = X1\X3 with (X2, r2), but this is
not a strong twisted union of Y and X2.
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x 6

x 7

x 8

x 2 x 11

x 4 x 9

x 12

x 6

x 7 x 7

x 1

x 10

x 3

x 7 x 7

x 6

x 6

x 6

x 5
x 5

x 5 x 5 x 5



Example of extensions of solutions
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Retraction
Let (X, r) be a nondegenerate symmetric sets. An equivalence
relation ∼ is defined on X as

x ∼ y iff Lx = Ly.

[X] = X/∼ denotes the set of equivalence classes [x].
I The left and the right actions of X onto itself induce

naturally left and right actions on the retraction [X], via

[α][x] := [αx] [α][x] := [αx], for all α, x ∈ X.

I The new actions define (as usual ) a canonical map
r[X] : [X]× [X] −→ [X]× [X]

I ([X], r[X]) is a nondegenerate symmetric set, called the
retraction of (X, r), and denoted Ret(X, r). Furthermore,

I (X, r) cyclic =⇒ ([X], r[X]) cyclic.
I (X, r) is lri =⇒ ([X], r[X]) is lri.
I (X, r) square-free =⇒ ([X], r[X]) square-free.



Multipermutation solutions. Conjectures

I The solution Ret(X, r) = ([X], [r]) is called the retraction of
(X, r).

I For all integers m ≥ 1, Retm(X, r) is defined recursively as
Retm(X, r) = Ret(Retm−1(X, r)).

I (X, r) is a multipermutation solution of level m, mpl(X, r) = m
if m is the minimal number (if any), such that Retm(X, r) is
the trivial solution on a set of one element.

I By definition (X, r) is a multipermutation solution of level 0 iff
X is a one element set.

Conjecture I. (TGI, 2004)

1. Every finite nondegenerate square-free symmetric set (X, r) is
retractable.

2. Every finite nondegenerate square-free symmetric set (X, r) is
multipermutation solution, with mpl(X, r) <| X |.

Clearly, these conjectures are equivalent.



???The solvable length sl(G(X, r)) = mpl(X, r) ???

Question 1.
Suppose (X, r) is a multipermutation symmetric set. Is there any
relation between mpl(X, r) and the algebraic properties of
S(X, r), G(X, r),A(X, r)?
Fact. [ESS], [GI]. Suppose (X, r) is a nondegenerate symmetric set.
Then the group G(X, r) is solvable.

Theorem
Let (X, r) be a finite nondegenerate square-free solution of order
n > 1. Suppose (X, r) is a multipermutation solution of level m.
Then the the solvable length of G(X, r) is at most m.

Conjecture II.

Suppose (X, r) is a finite nondegenerate square-free symmetric set
with multipermutation level m. Then the solvable length of G(X, r) is
exactly m.



For a nondegenerate square-free symmetric set (X, r) the
following conditions are equivallent.

I mpl(X, r) = 1.
I (X, r) is the trivial solution.
I xy = y, for all x, y ∈ X.
I S(X, r) is the free abelian monoid generated by X.
I G(X, r) is the free abelian group generated by X.
I G(X, r) = {idX}.

Proposition.

I mpl(X, r) = 2 ⇔ G(X, r) is abelian ⇒ slG(X, r) = 2.
I mpl(X, r) = 3 ⇒ slG(X, r) = 2.



Extensions and twisted unions

Definition (GI-M)

Let (X, rX) and (Y, rY) be disjoint quadratic sets. A quadratic
set (Z, r) is a (general) extension of (X, rX), (Y, rY), if Z = X

⋃
Y as

sets, and r extends the maps rX and rY. (Z, r) is a YB-extension of
(X, rX), (Y, rY) if r obeys YBE.

Example (ESS)

Let (X, rX), (Y, rY) be nondegenerate symmetric sets,
σ ∈ Aut(X, r), ρ ∈ Aut(Y, r). Define the nondegenerate
involutive extension (Z, r) = X\0Y via rX, rY and the formulae

r(α, x) = (σ(x), ρ−1(α)), r(x, α) = (ρ(α), σ−1(x)).

(Z, r) is a symmetric set called a twisted union. One has

Lx|Z = Lx|X.ρ, Lα|Z = Lα|Y.σ, ∀x ∈ X, α ∈ Y

The trivial extension (Z, r) of (X, rX), (Y, rY) is defined by
σ = idX, ρ = idY.



Strong twisted unions

Definition (GI-M)

A nondegenerate involutive extension (Z, r) is a strong twisted
union of (X, rX) and (Y, rY) if

I The assignment α −→ α• extends to a left action of
G(Y, rY) on X, and the assignment x −→ •x extends to a
right action of G(X, rX) on Y;

I The actions satisfy

stu : αy
x = αx; α

βx = αx, for all x, y ∈ X, α, β ∈ Y

We shall use notation (Z, r) = (X, rX)\(Y, rY)

Lemma
Every extension (Z, r) of two disjoint trivial solutions (X, r1) and
(Y, r2) is a strong twisted union. Furthermore, if Z is a nontrivial
extension of (X, r1) and (Y, r2), then mpl(Z, r) = 2.



Theorem (GI-M)

1. A strong twisted union of solutions (Z, r) = (X, rX)\(Y, rY)
obeys YBE iff

I The assignment α −→ α• extends to a group homomorphism

ϕ : G(Y, rY) −→ Aut(X, r); and

I The assignment x −→ •x extends to a group homomorphism

ψ : G(X, rX) −→ Aut(Y, r).

The pair of group homomorphisms is uniquely determined by r.

2. Furthermore, there is a one-to-one correspondence between the
sets Ext\(X, Y) and
Hom(G(Y, rY), Aut(X, rX))×Hom(G(X, rX), Aut(Y, rY))
using (1).



Main Theorem
[GI-M] Let (X, r) be a finite nondegenerate square-free
symmetric set of order ≥ 2, G(X, r), Γ(X, r) in the usual
notations. Let Γ1, Γ2, · · · , Γs be all connected components, and
Xi = V(Γi), 1 ≤ i ≤ s, be their sets of vertices. TFAEQ.

1. (X, r) is multipermutation solution with mpl(X, r) = 2.
2. G(X, r) is an abelian group of order ≥ 2.
3. G(X, r) is a nontrivial subgroup of the automorphism

group Aut(X, r).
4. The set of nontrivial components is nonempty. Every

nontrivial connected component Γi is a graph of first type,
and ∀i, j, 1 ≤ i, j ≤ s, ∀a, b ∈ Xj one has La|Xi

= Lb|Xi
.

5. (X, r) can be split into disjoint r-invariant subsets
Xi, 1 ≤ i ≤ s, where each (Xi, r|Xi

) is a trivial solution and
X = X1\X2\ · · · \Xs, in the sense that we can put
parentheses and ”apply” \ in any order. In particular,

X = Xi\(
⋃

1≤j≤s,j 6=i

Xj)



The ”increasing” sequence (Xm, rm) with mplXm = m

Theorem
There exists an infinite sequence of involutive nondegenerate
square-free solutions

(X0, r0), (X1, r1), · · · , (Xm, rm), · · ·

such that
(i) for each m, m = 0, 1, 2, · · · , Xm ⊂ Xm+1 is an rm+1-invariant
subset of Xm+1. Furthermore,
(ii) For each m ≥ 0 (Xm, rm) is a finite multipermutation solution
with mpl(Xm, rm) = m, and of order Nm, s.t.
N0 = 1, N1 = 2, N2 = 3, and for m ≥ 2, Nm+1 = 2Nm + 1.
(iii) For each m > 1, the group G = G(Xm, rm) is a wreath product
Gm = (Gm−1)wrZ2, and has solvable length sl(Gm) = m
Corollary. For every integer m ≥ 1 there exist a
multipermutation square-free symmetric set (Xm, rm), with
mplXm = m, and slG(Xm, rm) = m.



Lemma
Let (X1, r1), (X2, r2) be multipermutation square-free solutions. Then
every twisted union (Z, r) = (X1, r1)\0(X2, r1) is a
multipermutation solution of level mplZ = max{mplX1, mplX2}

Lemma
Suppose mpl(X, r) = m, and there exists an automorphism
τ ∈ Aut(X, r) \ G(X, r), and (Y, r0) is the trivial solution on the one
element set Y = {a}, where a is not in X. Let (Z, rZ) = X\{a} be the
strong twisted union defined via La = τ, Lx|Y = idY, for all x ∈ X.
Then mpl(Z) = m + 1.



Recursive construction of the sequence

Let X = {xn | 1 ≤ n} be a countable set.
I (X0, r0) is the one element trivial solution with X0 = {x1}.
I (X1, r1) is the trivial solution on the set X1 = {x1, x2}.
I We set (X2, r2) = X1\{x3}, where Lx3 = (x1x2). Clearly,

mplX2 = 2.
I Construction of (X3, r3). Let (X′

2, r′2) be an isomorphic copy
of (X2, r2), where X′

2 = {x4, x5, x6}, and the map
τ : (X2, r2) −→ (X′

2, r′2) with τ(xi) = xi+3, 1 ≤ i ≤ 3 is an
isomorphism of solutions. Let (Y2, rY2) = X2\0X′

2 be the
trivial extension. We set (X3, r3) = Y2\{x7}, where the map
r3 is defined via the left action Lx7 = (x1x4)(x2x5)(x3x6).
One has Lx7 ∈ Aut(Y2, rY2 \ G(Y2, rY2), so mplX3 =3.



The recursive construction

Assume we have constructed the sequence
(X0, r0), (X1, r1), · · · , (Xm, rm), satisfying conditions (i) and (ii).
We shall construct effectively (Xm+1, rm+1) so that (i) and (ii) are
satisfied. Let N = Nm. X′

m = {xN+1, · · · x2N, } and let (X′
m, rX′

m
)

be the solution isomorphic to (Xm, rm) via the isomorphism
τ : Xm −→ X′

m with τ(xi) = xi+N, 1 ≤ i ≤ N. We denote by
(Ym, rYm) the trivial extension Xm\0X′

m, and set
Xm+1 = (Ym, rYm)\{x2N+1} and rm+1 defined via the action
Lxm+1 = (x1xN+1)(x2xN+2) · · · (xNx2N). One can show that
mpl(Xm+1, rm+1) = m + 1.



Conjecture III.

Let (X, rX) and (Y, rY), be square-free multipermutation solutions.
Suppose the strong twisted union (Z, r) = X\Y is a nondegenerate
symmetric set. Then mplZ ≤ max{mplX, mplY}+ 1.
The following Theorem is true for arbitrary braided sets.

Theorem (GI-M)

Let (X, rX), (Y, rY) be disjoint solutions of the YBE, with YB- groups
GX = G(X, rX), and GY = G(Y, rY). Let (Z, r) be a regular YB-
extension of (X, rX), (Y, rY), with a YB-group GZ = G(Z, r). Then

I GX, GY is a matched pair of groups with actions induced from
the braided group (GZ, r).

I GZ is isomorphic to the double crossed product GX ./ GY.

Proposition. (ESS)

If Z ∈ Ext+(X, Y), then GZ ' GYB < GX, where the semidirect
product is formed using the action of GY on X via α → Lα.
Ext+(X, Y) is the set of all YB-extensions (Z, r) of the symmetric
sets (X, r1), (Y, r2) with r(x, α) = (α, xα).



Open questions

Question 2.
Suppose (Z, r) is a YB strong twisted union of the finite square-free
symmetric sets (X, rX), (Y, rY). How exactly are related the groups
GZ, GX, GY?

Question 3.
Suppose (Z, r) is a finite nondegenerate multipermutation square-free
symmetric set, mplZ = m . Is it true that (Z, r) can be always
presented as a strong twisted union of invariant subsets of
multipermutation level < m?


