Set-theoretic Solutions of the Yang-Baxter Equation

Tatiana Gateva-Ivanova
INI Visiting Fellow
Cambridge
Institute of Mathematics and Informatics, Bulg.Acad.Sci &
AUBG

March 2008

Certain matrix solutions of the braid or Yang-Baxter equations lead to braided categories, knot invariants, quantum groups and other important constructions. However, these equations are also very interesting at the level of set maps $r: X \times X \to X \times X$, where X is a set and r is a bijection, a line of study proposed by Drinfeld (1990)

Set theoretic solutions extend to special linear solutions but also lead to

- ▶ a great deal of combinatorics group action on *X*, cyclic conditions,
- matched pairs of groups, matched pairs of semigroups
- semigroups of I type with a structure of distributive lattice
- special graphs
- algebras with very nice algebraic and homological properties such as being:
- Artin-Schelter regular rings;
- Koszul;
- Noetherian domains;
- with PBW k-bases;
- with good computational properties -the theory of noncommutative Groebner bases is applicable.

YBE, QYBE and set-theoretic YBE

Let *V* be a vector space over a field *k*, *R* be a linear automorphism of $V \otimes V$.

- *R* is a solution of YBE if $R^{12}R^{23}R^{12} = R^{23}R^{12}R^{23}$,
- ▶ R is a solution of QYBE if $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$, where both equalities hold in $V \otimes V \otimes V$, and R^{ij} means R acting on the i-th and j-th component.
- ▶ Let $X \neq \emptyset$ be a set. A bijective map $r : X \times X \longrightarrow X \times X$ is a set-theoretic solution of YBE, if the braid relation

$$r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$$

holds in $X \times X \times X$, $r^{12} = r \times id_X$, $r^{23} = id_X \times r$. In this case (X, r) is called *a braided set*.

► Each set-theoretic solution of YBE induces naturally a solution to the YBE and QYBE.

Quadratic sets (X,r)

A quadratic set (X, r) is a nonempty set X with a bijective map $r: X \times X \longrightarrow X \times X$. The formula

$$r(x,y) = (^xy, x^y).$$

defines a "left action" $\mathcal{L}: X \times X \longrightarrow X$, and a "right action" $\mathcal{R}: X \times X \longrightarrow X$, on X as:

$$\mathcal{L}_x(y) = {}^xy$$
, $\mathcal{R}_y(x) = x^y$ for all $x, y \in X$.

- ▶ *r* is *nondegenerate*, if \mathcal{R}_x and \mathcal{L}_x are bijective for each $x \in X$, i.e. \mathcal{L}_x , $\mathcal{R}_x \in Sym(X)$;
- ▶ *r* is *square-free* if r(x,x) = (x,x) for all $x \in X$;
- (X, r) is a braided set if $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$;
- A braided set (X, r) with r involutive is called a *symmetric* set.

Associated algebraic objects to (X, r)

These are generated by *X* and with quadratic defining relations $\Re = \Re(r)$:

$$xy = zt \in \Re \iff r(x,y) = (z,t).$$

- ► The monoid $S = S(X,r) = \langle X; \Re(r) \rangle$;
- The group $G = G(X,r) = {}_{gr}\langle X; \Re(r) \rangle;$
- ► *The k-algebra A* = $A(k, X, r) = k\langle X \rangle / (\Re(r))$, where k is a field
- ► The group of left action $\mathcal{G} = \mathcal{G}(X,r)$ defined as the subgroup $\mathcal{L}(G(X,r))$ of Sym(X).

Conditions |1,r1,|r3 and the group actions

(X, r) is a braided set *iff* the following three conditions hold for all $x, y, z \in X$.

- ▶ **11**: ${}^{x}({}^{y}z) = {}^{x}y({}^{x}{}^{y}z),$
- ▶ **r1**: $(x^y)^z = (x^{yz})^{y^z}$,
- ► lr3: $({}^{x}y)^{(x^{y}(z))} = ((x)^{y_{z}})(y^{z}),$

When (X, r) is nondegenerate, **11** implies that G = G(X, r) acts on X on the left, respectively, **r1** implies a right action of G on X. Let $\mathcal{L}: G(X, r) \longrightarrow Sym(X)$ be the group homomorphism defined via the left action.

G = G(X, r) will denote the subgroup L(G(X, r)) of Sym(X).

• $G(X,r) = \{id_X\}$ *iff* (X,r) is the trivial solution.

Example of a nondegenerate square-free solution of mp level 2

Let $X = \{x_1, x_2, x_3, x_4, b, c\}$, define r as:

$$\begin{array}{lll} r(b,x_1) = (x_2,b) & r(b,x_2) = (x_1,b) & r(b,x_3) = (x_4,b) \\ r(b,x_4) = (x_3,b) & r(c,x_1) = (x_3,c) & r(c,x_3) = (x_1,c) \\ r(c,x_2) = (x_4,c) & r(c,x_4) = (x_2,c), & r(b,c) = (c,b) \\ r(c,b) = (b,c) & r(x_j,x_i) = (x_i,x_j), & 1 \leq i,j \leq 4. \end{array}$$

 \Re consists of 15 defining relations

$$bx_1 = x_2b$$
 $bx_2 = x_1b$ $bx_3 = x_4b$ $bx_4 = x_3b$ $cx_1 = x_3c$ $cx_3 = x_1c$ $cx_2 = x_4c$ $cx_4 = x_2c$ $x_1x_1 = x_1x_1$, $1 \le i < j \le 4$, $cb = bc$.

A square-free nondeg. symmetric set (X,r) is uniquely defined via the left action

In our example, *r* is uniquelly defined via

$$\mathcal{L}_b = (x_1 x_2)(x_3 x_4), \quad \mathcal{L}_c = (x_1 x_3)(x_2 x_4), \quad \mathcal{L}_{x_i} = i d_X, 1 \le i \le 4$$

 $(\mathcal{R}_z = \mathcal{L}_z^{-1})$ always hold for nondegenerate square-free symmetric sets).

Then $\mathcal{G}(X,r) = \langle \mathcal{L}_b \rangle \times \langle \mathcal{L}_c \rangle$, so it is isomorphic to the *Klein's* group $\mathbb{Z}_2 \times \mathbb{Z}_2$. Direct computations show that the set of automorphisms consists of the following eight elements:

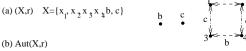
$$id_X$$
, $au_1 = (bc)(x_2x_3)$, $au_2 = (bc)(x_1x_2x_4x_3)$, $au_3 = (bc)(x_1x_3x_4x_2)$, $au_4 = (bc)(x_1x_4)$, au_b , au_c , $au_b \circ au_c$.

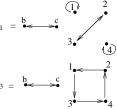
Furthermore, one has

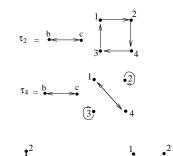
Aut
$$(X, r) = gr\langle \tau_1, \tau_2 \mid \tau_1^2 = 1, \tau_2^4 = 1, \tau_1 \tau_2 \tau_1^{-1} = \tau_2^3 \rangle \approx D_4.$$

 $\operatorname{Aut}(X,r)$ is a proper subgroup of $\operatorname{Nor}_{\operatorname{Sym}(X)}(\mathcal{G})$.

(a)
$$(X,r)$$
 $X=\{x_1, x_2, x_3, x_4, b, c\}$

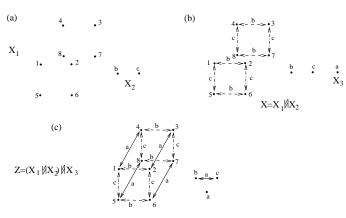




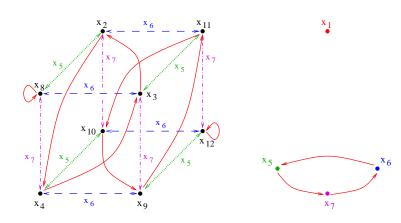


\natural is not associative, mpl(Z) = 3

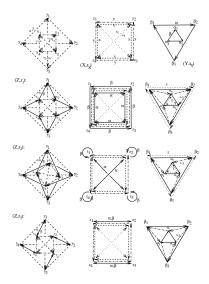
 $(Z,r) = (X_1
atural X_2)
atural X_3) = (X_2
atural X_1)
atural X_3).$ (Z,r) is an YB extension of $Y = X_1
atural X_3$ with (X_2,r_2) , but this is not a strong twisted union of Y and X_2 .



The Crystal



Example of extensions of solutions



Retraction

Let (X, r) be a nondegenerate symmetric sets. An equivalence relation \sim is defined on X as

$$x \sim y$$
 iff $\mathcal{L}x = \mathcal{L}y$.

 $[X] = X/_{\sim}$ denotes the set of equivalence classes [x].

► The left and the right actions of *X* onto itself induce naturally left and right actions on the retraction [X], via

$$[\alpha][x] := [\alpha x] \quad [\alpha]^{[x]} := [\alpha^x], \text{ for all } \alpha, x \in X.$$

- ▶ The new actions define (as usual) a canonical map $r_{[X]}: [X] \times [X] \longrightarrow [X] \times [X]$
- \triangleright ([X], $r_{[X]}$) is a nondegenerate symmetric set, called the retraction of (X,r), and denoted Ret(X,r). Furthermore,
- \blacktriangleright (X,r) cyclic \Longrightarrow $([X],r_{[X]})$ cyclic.
- (X,r) is $\mathbf{lri} \Longrightarrow ([X],r_{[X]})$ is \mathbf{lri} .
- (X,r) square-free \Longrightarrow $([X],r_{[X]})$ square-free.

Multipermutation solutions. Conjectures

- ▶ The solution Ret(X, r) = ([X], [r]) is called the *retraction of* (X, r).
- ► For all integers $m \ge 1$, $Ret^m(X, r)$ is defined recursively as $Ret^m(X, r) = Ret(Ret^{m-1}(X, r))$.
- ▶ (X,r) is a multipermutation solution of level m, mpl(X,r) = m if m is the minimal number (if any), such that $Ret^m(X,r)$ is the trivial solution on a set of one element.
- ▶ By definition (X,r) is a multipermutation solution of level 0 iff X is a one element set.

Conjecture I. (TGI, 2004)

- 1. Every finite nondegenerate square-free symmetric set (X,r) is retractable.
- 2. Every finite nondegenerate square-free symmetric set (X,r) is multipermutation solution, with mpl(X,r) < |X|.

Clearly, these conjectures are equivalent.

???The solvable length sl(G(X,r)) = mpl(X,r) ???

Question 1.

Suppose (X,r) is a multipermutation symmetric set. Is there any relation between mpl(X,r) and the algebraic properties of S(X,r), G(X,r), A(X,r)?

Fact. [ESS], [GI]. Suppose (X, r) is a nondegenerate symmetric set. Then the group G(X, r) is solvable.

Theorem

Let (X,r) be a finite nondegenerate square-free solution of order n > 1. Suppose (X,r) is a multipermutation solution of level m. Then the solvable length of G(X,r) is at most m.

Conjecture II.

Suppose (X,r) is a finite nondegenerate square-free symmetric set with multipermutation level m. Then the solvable length of G(X,r) is exactly m.

For a nondegenerate square-free symmetric set (X, r) the following conditions are equivalent.

- ▶ mpl(X, r) = 1.
- \triangleright (*X*, *r*) is the trivial solution.
- y = y, for all $x, y \in X$.
- \triangleright S(X,r) is the free abelian monoid generated by X.
- ▶ G(X,r) is the free abelian group generated by X.
- $\triangleright \mathcal{G}(X,r) = \{id_X\}.$

Proposition.

- ▶ $mpl(X,r) = 2 \Leftrightarrow \mathcal{G}(X,r)$ is abelian $\Rightarrow slG(X,r) = 2$.
- $ightharpoonup mpl(X,r) = 3 \Rightarrow sl\mathcal{G}(X,r) = 2.$

Extensions and twisted unions

Definition (GI-M)

Let (X, r_X) and (Y, r_Y) be disjoint quadratic sets. A quadratic set (Z, r) is a (general) extension of (X, r_X) , (Y, r_Y) , if $Z = X \cup Y$ as sets, and r extends the maps r_X and r_Y . (Z, r) is a YB-extension of (X, r_X) , (Y, r_Y) if r obeys YBE.

Example (ESS)

Let (X, r_X) , (Y, r_Y) be nondegenerate symmetric sets, $\sigma \in Aut(X, r)$, $\rho \in Aut(Y, r)$. Define the nondegenerate involutive extension $(Z, r) = X \natural_0 Y$ via r_X, r_Y and the formulae

$$r(\alpha, x) = (\sigma(x), \rho^{-1}(\alpha)), \quad r(x, \alpha) = (\rho(\alpha), \sigma^{-1}(x)).$$

(Z, r) is a symmetric set called a *twisted union*. One has

$$\mathcal{L}_{x|Z} = \mathcal{L}_{x|X}.\rho$$
, $\mathcal{L}_{\alpha|Z} = \mathcal{L}_{\alpha|Y}.\sigma$, $\forall x \in X, \alpha \in Y$

The trivial extension (Z,r) of (X,r_X) , (Y,r_Y) is defined by $\sigma = id_X$, $\rho = id_Y$.

Strong twisted unions

Definition (GI-M)

A nondegenerate involutive extension (Z, r) is a *strong twisted union* of (X, r_X) and (Y, r_Y) if

- ► The assignment $\alpha \longrightarrow {}^{\alpha} \bullet$ extends to a left action of $G(Y, r_Y)$ on X, and the assignment $x \longrightarrow {}^{\alpha} \bullet$ extends to a right action of $G(X, r_X)$ on Y;
- The actions satisfy

stu:
$$\alpha^y x = \alpha^x x$$
; $\alpha^{\beta x} = \alpha^x$, for all $x, y \in X, \alpha, \beta \in Y$

We shall use notation $(Z, r) = (X, r_X) \natural (Y, r_Y)$

Lemma

Every extension (Z,r) of two disjoint trivial solutions (X,r_1) and (Y,r_2) is a strong twisted union. Furthermore, if Z is a nontrivial extension of (X,r_1) and (Y,r_2) , then mpl(Z,r)=2.

Theorem (GI-M)

- 1. A strong twisted union of solutions $(Z,r) = (X,r_X)\natural(Y,r_Y)$ obeys YBE iff
 - The assignment $\alpha \longrightarrow {}^{\alpha} \bullet$ extends to a group homomorphism

$$\varphi: G(Y, r_Y) \longrightarrow Aut(X, r);$$
 and

► The assignment $x \longrightarrow \bullet^x$ extends to a group homomorphism

$$\psi: G(X, r_X) \longrightarrow Aut(Y, r).$$

The pair of group homomorphisms is uniquely determined by r.

2. Furthermore, there is a one-to-one correspondence between the sets $Ext^{\natural}(X,Y)$ and $Hom(G(Y,r_Y),Aut(X,r_X)) \times Hom(G(X,r_X),Aut(Y,r_Y))$ using (1).



Main Theorem

[GI-M] Let (X,r) be a finite nondegenerate square-free symmetric set of order ≥ 2 , $\mathcal{G}(X,r)$, $\Gamma(X,r)$ in the usual notations. Let $\Gamma_1, \Gamma_2, \cdots, \Gamma_s$ be all connected components, and $X_i = \mathcal{V}(\Gamma_i)$, $1 \leq i \leq s$, be their sets of vertices. TFAEQ.

- 1. (X,r) is multipermutation solution with mpl(X,r) = 2.
- 2. G(X, r) is an abelian group of order ≥ 2 .
- 3. G(X,r) is a nontrivial subgroup of the automorphism group Aut(X,r).
- 4. The set of nontrivial components is nonempty. Every nontrivial connected component Γ_i is a graph of first type, and $\forall i, j, 1 \leq i, j \leq s, \forall a, b \in X_i$ one has $\mathcal{L}_{a|X_i} = \mathcal{L}_{b|X_i}$.
- 5. (X,r) can be split into disjoint r-invariant subsets $X_i, 1 \le i \le s$, where each $(X_i, r_{|X_i})$ is a trivial solution and $X = X_1 \natural X_2 \natural \cdots \natural X_s$, in the sense that we can put parentheses and "apply" \natural in any order. In particular,

$$X = X_i \natural (\bigcup_{1 \le j \le s, j \ne i} X_j)$$

The "increasing" sequence (X_m, r_m) with $mplX_m = m$

Theorem

There exists an infinite sequence of involutive nondegenerate square-free solutions

$$(X_0, r_0), (X_1, r_1), \cdots, (X_m, r_m), \cdots$$

such that

- (i) for each m, $m = 0, 1, 2, \dots$, $X_m \subset X_{m+1}$ is an r_{m+1} -invariant subset of X_{m+1} . Furthermore,
- (ii) For each $m \ge 0$ (X_m, r_m) is a finite multipermutation solution with $mpl(X_m, r_m) = m$, and of order N_m , s.t.
- $N_0 = 1, N_1 = 2, N_2 = 3$, and for $m \ge 2$, $N_{m+1} = 2N_m + 1$.
- (iii) For each m > 1, the group $G = G(X_m, r_m)$ is a wreath product $G_m = (G_{m-1})_{wr}\mathbb{Z}_2$, and has solvable length $sl(G_m) = m$

Corollary. For every integer $m \ge 1$ there exist a multipermutation square-free symmetric set (X_m, r_m) , with $mplX_m = m$, and $slG(X_m, r_m) = m$.

Lemma

Let (X_1, r_1) , (X_2, r_2) be multipermutation square-free solutions. Then every twisted union $(Z, r) = (X_1, r_1) \natural_0 (X_2, r_1)$ is a multipermutation solution of level $mplZ = max\{mplX_1, mplX_2\}$

Lemma

Suppose mpl(X,r)=m, and there exists an automorphism $\tau \in Aut(X,r) \setminus \mathcal{G}(X,r)$, and (Y,r_0) is the trivial solution on the one element set $Y=\{a\}$, where a is not in X. Let $(Z,r_Z)=X
atural \{a\}$ be the strong twisted union defined via $\mathcal{L}_a=\tau$, $\mathcal{L}_{x|Y}=id_Y$, for all $x\in X$. Then mpl(Z)=m+1.

Recursive construction of the sequence

Let $X = \{x_n \mid 1 \le n\}$ be a countable set.

- (X_0, r_0) is the one element trivial solution with $X_0 = \{x_1\}$.
- (X_1, r_1) is the trivial solution on the set $X_1 = \{x_1, x_2\}$.
- ▶ We set $(X_2, r_2) = X_1 \natural \{x_3\}$, where $\mathcal{L}_{x_3} = (x_1 x_2)$. Clearly, $mplX_2 = 2$.
- Construction of (X_3, r_3) . Let (X_2', r_2') be an isomorphic copy of (X_2, r_2) , where $X_2' = \{x_4, x_5, x_6\}$, and the map $\tau: (X_2, r_2) \longrightarrow (X_2', r_2')$ with $\tau(x_i) = x_{i+3}, 1 \le i \le 3$ is an isomorphism of solutions. Let $(Y_2, r_{Y_2}) = X_2 \natural_0 X_2'$ be the trivial extension. We set $(X_3, r_3) = Y_2 \natural \{x_7\}$, where the map r_3 is defined via the left action $\mathcal{L}_{x_7} = (x_1 x_4)(x_2 x_5)(x_3 x_6)$. One has $\mathcal{L}x_7 \in Aut(Y_2, r_{Y_2}) \setminus \mathcal{G}(Y_2, r_{Y_2})$, so $mplX_3 = 3$.

The recursive construction

Assume we have constructed the sequence $(X_0,r_0),(X_1,r_1),\cdots,(X_m,r_m)$, satisfying conditions (i) and (ii). We shall construct effectively (X_{m+1},r_{m+1}) so that (i) and (ii) are satisfied. Let $N=N_m$. $X_m'=\{x_{N+1},\cdots x_{2N},\}$ and let $(X_m',r_{X_m'})$ be the solution isomorphic to (X_m,r_m) via the isomorphism $\tau:X_m\longrightarrow X_m'$ with $\tau(x_i)=x_{i+N},1\leq i\leq N$. We denote by (Y_m,r_{Y_m}) the trivial extension $X_m \natural_0 X_m'$, and set $X_{m+1}=(Y_m,r_{Y_m}) \natural \{x_{2N+1}\}$ and r_{m+1} defined via the action $\mathcal{L}_{x_{m+1}}=(x_1x_{N+1})(x_2x_{N+2})\cdots(x_Nx_{2N})$. One can show that $mpl(X_{m+1},r_{m+1})=m+1$.

Conjecture III.

Let (X, r_X) and (Y, r_Y) , be square-free multipermutation solutions. Suppose the strong twisted union $(Z, r) = X \natural Y$ is a nondegenerate symmetric set. Then $mplZ \leq max\{mplX, mplY\} + 1$.

The following Theorem is true for arbitrary braided sets.

Theorem (GI-M)

Let (X, r_X) , (Y, r_Y) be disjoint solutions of the YBE, with YB- groups $G_X = G(X, r_X)$, and $G_Y = G(Y, r_Y)$. Let (Z, r) be a regular YB-extension of (X, r_X) , (Y, r_Y) , with a YB-group $G_Z = G(Z, r)$. Then

- ▶ G_X , G_Y is a matched pair of groups with actions induced from the braided group (G_{Z}, r) .
- ▶ G_Z is isomorphic to the double crossed product $G_X \bowtie G_Y$.

Proposition. (ESS)

If $Z \in Ext^+(X,Y)$, then $G_Z \simeq G_Y \rhd < G_X$, where the semidirect product is formed using the action of G_Y on X via $\alpha \to \mathcal{L}_{\alpha}$.

 $Ext^+(X,Y)$ is the set of all YB-extensions (Z,r) of the symmetric sets $(X,r_1),(Y,r_2)$ with $r(x,\alpha)=(\alpha,x^\alpha)$.

Open questions

Question 2.

Suppose (Z,r) is a YB strong twisted union of the finite square-free symmetric sets (X,r_X) , (Y,r_Y) . How exactly are related the groups G_Z , G_X , G_Y ?

Question 3.

Suppose (Z,r) is a finite nondegenerate multipermutation square-free symmetric set, mplZ = m. Is it true that (Z,r) can be always presented as a strong twisted union of invariant subsets of multipermutation level < m?