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An interpolation formula

We’d better assume f goes to zero at infinity.  Note 
the minus sign!
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Generalization: Chevron 
interpolation

Consider a 2-particle version with 

Interpret t1 and t2 as the position of 2 particles on the half line 
and let t12 = |t1 – t2|. Use subscripts 1,2, or 12 to indicate partial 
derivatives:
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Apply the N = 1 formula to f1, integrating wrt t2 – t1 > 0, t2 – t1 = t12

And to f2, integrating wrt t1 – t2 > 0, t1 – t2 = t12

The two f1,2 terms combine to form

Graphically, there are 3 terms (rooted forests):

f1,2 O                             O

f1,12 O-------------------------X                       

f2,12 X------------------------O
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General case

which tends to zero when any of the ti tends to infinity.  

We allow “one-body” and “two-body” variables only.

Claim:

Here F is a forest on {1,…,N}, each tree has a root.

R is the set of roots.  (F,R) denotes derivatives wrt edge

variables tij with ij in F and root variables ti with i in R.
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Inductive proof of Forest-Root formula
Begin with diagonal interpolation as before:

Proceed along the wings of the 
chevron, which now represent 
the N – 1 variables not yet 
differentiated. 

Apply F-R formula, case N – 1, 
to each of the N terms

Each root derivative gives 2 terms as in previous example. 
Trees grow from below or sprout anew:

O becomes   O-----------------X    +     O                    X 
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Application to HC gases
Need 2-body interactions. 

Full disclosure:  AR 95 book has a formula which is related 
to our F-R formula but the margin is too small to 
demonstrate it.
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HC gas partition function

Here xi are spatial variables in ZD or RD, xij = xi – xj.

The idea is to pick U(t,x) so that when all t’s are zero we get 
a HC condition Πij(1 – I(xij)), where I(x) is the indicator 
function of a ball about 0. We take for example

So the HC condition abruptly vanishes when t > 1.
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Density of HC gas

Where S = RD or ZD and

g is a smooth bump function, g(0) = 1. Apply F-R formula:
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Apply the (F,R) derivatives to f.  Each ji in F hits a U:

(d/dt)U(t,x) = V(t,x) = I(x)δ(t-1)

Each i in R differentiates a g. For an n-vertex tree, -(g(εt)n)’ is 
a spread out probability measure. Free floating trees cancel 
the partition function. Only one tree remains, the one pinned 
at 0. The result is:

(-1)N-1

Note that x and t variables have been combined, y=(t,x) lives in 
RD x R+. The trees now live in an extra dimension!

An Extra Dimension
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Upward links denote factors of V which link the site below to 
an element of the ball about that site.  Horizontal links not in
the tree have hard core exclusion from factors of U.
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Directed Branched Polymers
We have proven the following identity, which connects the 
density of the hard core gas in D dimensions with the 
generating function of directed branched polymers in D + 1 
dimensions:
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Critical Exponents
In D = 1, the nearest neighbor example is a dimer model 
which has a computable pressure:

This has a square-root singularity at zc = -1/4. The two-
dimensional DBP generating function is thus

which has an inverse square-root singularity.  The coefficient 
of zN counts DBPs and it behaves like

with  θ = ½.
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Other examples
In D = 2 the density of the hard hexagon model behaves as 
(z-zc)1-α with α =7/6.  This implies θ = 5/6 for a three-
dimensional DBP model based on it. 

Continuous examples have similar behavior.
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Related Models
Directed Animals:  There are exact results in two dimensions 
by Dhar, Sumedha, Bousquet-Melou, etc. coming from a 
representation as HC gas dynamics (80’s). Results on 
exponents similar to those for DBP.

Di Francesco & Guitter 02:  Lorentzian semi-random lattices 
(2d) are related to directed animals and also to D=1 HC 
gases.
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A 2d Forest-Root Formula
As before we interpolate a function f(t) but now

wi can be thought of as the position of a particle in the plane 
instead of the half-line. The new formula is

Case N = 1:
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Differential Forms
We need Grassman variables to get anywhere with this 
identity.  It is natural to introduce them as differential forms as 
in Brydges’s lecture.

Suppose we generate a loop of 2-forms on edges ij. Since wij
= wi – wj, there is a relation and the product of 2-forms is 0. 
Therefore only forests appear in the Taylor series.
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Each tree of the forest has a root which corresponds to a 2-form

This is needed to keep the total form degree equal to 2N 
and thereby allow the term to be nonvanishing.
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F-R formula in form language

turns into the Forest-Root formula:

When expanded out, the equation

The constants are explained by the change of variable:
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Feynman parameters
There is a “cosmological” proof of the F-R formula, using 
supersymmetry, but here I will give a more earthly 
argument which goes back to Brydges-Wright 88. 
Compute the Laplace transform of f:

Note that ti = |xi|2, tij = |xi – xj|2. One could also use p’s 
instead of x’s which would make it a momentum space 
formula, and then the a’s are Feynman parameters.
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Linearity
Assume f decays exponentially in each ti. Then the a’s have 
positive real part in the inverse Laplace transform

By linearity, the F-R formula reduces to the case f(t) = 
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Quadratic form

a dw dw dw dwij i j i j( ) ( )− ∧ −

Note that

where

Get this by expanding into four terms the two-form

and combining coefficients for each monomial dw dwi j∧
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Determinants cancel

The “Fermionic” determinant is actually a Jacobian.  It cancels 
the “Bosonic” determinant that arises from doing the Gaussian 
integral over w. This proves the F-R formula for exponentials.
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Matrix-Tree theorem

1 =
∈ ∈
∏∑ ∏a ai
i RF R

ij
ij F( , )

We have learned that

1 =

Perform the derivatives to obtain

, so

det ,
( , )

A a ai
i RF R

ij
ij F

=
∈ ∈
∏∑ ∏



28

and one can express the a’s in terms of the matrix entries Aij:

a A a Ai ijj

N
ij ij= = −

=∑ 1
,

which gives the usual form of the matrix tree theorem. (If 
one puts ai = 0 one gets a sum over trees only.)

Grassman variable proofs of matrix-tree theorems appear 
in AA04 and CJSSS04.
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More dimensional reduction
A new interpolation formula should lead to new results for 
the HC gas.  We restrict attention to the continuum, so let xi
be in RD. 

Use the following HC weight for hard disks:

Then
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Two extra dimensions
The integrand is

Extend to nonzero t:

With yij = (xij, wij) in RD+2, U now represents a hard core 
condition in D + 2 dimensions.
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Branched Polymers in dimension D + 2
Apply the Forest-Root Formula:

Each d/dtij, when applied to Uij, becomes ½ surface 
measure for the integration over yij = (xij, wij) in RD+2.  The 
spheres are stuck together according to the forest F.
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Dimensional Reduction
Thinking of the trees as connected Mayer graphs, they 
become independent of each other as the large t cutoff is 
removed.  Then we can compute the logarithm and the 
pressure as 

where

is the generating function for branched polymers in dim D + 2. 
Here
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Critical Exponents
The hard disk pressure is computable in D = 0 or 1, so we 
learn the exact form of the BP generating function in 
dimensions 2:

and 3:

From this we obtain the volume exponents:

θ= 1 in D + 2 = 2

θ= 3/2 in D + 2 = 3
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Remarks
Due to the alternating nature of the Mayer expansion, the 
first singularity of the pressure is at negative activity.  It is 
one of several systems classified with the Lee-Yang edge 
singularity (Ising in imaginary field).

We confirm the Parisi-Sourlas predicted relation between θ
and the Lee-Yang edge exponent.

Kenyon-Winkler 07: More invariances for the hard sphere 
BP model, allow varying radii in dim 2.

Thanks to my long time friend and collaborator David 
Brydges!


