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A vacancy in a sea of dimers

The dimer model is a venerable subject in statistical mechanics
and combinatorics [Kasteleyn, Fisher, Temperley...].
Here we consider the square lattice, fully covered with dimers
except for a few possible vacancies.

Dimers can naturally “slide” onto the vacancy (similarly to the
Rush HourTM game).
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Questions

Starting from an initial configuration of dimers/vacancy, can we
characterize the set of attainable configurations ?

What if the initial configuration is drawn (uniformly) at random ?
(toy model for a glassy system)

For simplicity we consider the case of a rectangular grid of finite
size (to be taken later to infinity).
Obvious remarks :

with one vacancy, the number of sites must be odd :
(2L + 1)× (2M + 1)

coloring every other site in white and black (with white
corners), the vacancy must be on the “white” grid

the vacancy can reach at most every other site of the white
grid (“even/odd” white subgrids, corner : even)
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Vacancy in a corner : Temperley’s bijection revisited

Consider first the case where the vacancy is initially in a corner.
We have the following :

Theorem [Temperley]

There is a bijection between dimer configurations on a
(2L + 1)× (2M + 1) grid with a given corner removed, and
spanning trees on a (L + 1)× (M + 1) grid.

For a given initial configuration with vacancy on the corner (or
anywhere on the boundary), the associated spanning tree can be
seen as the graph of attainable configurations. The vacancy is fully
delocalized.
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Vacancy in the bulk : webs

Now for an initial configuration with vacancy in the bulk, the
vacancy can be localized.

Definition

A web on a grid is a spanning subgraph with a distinguished vertex
(the root), and whose connected components consist of :

a tree containing the root

graphs containing exactly one cycle, that moreover winds
around the root.

A dimer configuration on a (2L + 1)× (2M + 1), with vacancy on
the even white grid, yields a web on a (L + 1)× (M + 1) grid. A
web with n cycles has exactly 4n corresponding dimer
configurations.
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Vacancy in the bulk : webs

The graph of attainable configurations now corresponds to the
central tree component of the web (sites accessible to the
vacancy). We have to characterize how big it is (s number of
sites).

Findings

In the thermodynamic limit, s remains finite (localization),
with probability distribution p(s).

However localization is weak in the sense that p(s) ∼ s−δ for
s →∞, with δ = 9/8 < 2
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Dynamical properties

Starting from a random initial state, and applying random moves
(according to some natural dynamics), how far does the vacancy
go ?

number of distinct sites visited : 〈N̄(t)〉 ∼ tη, η = 0.54± 0.03

mean square displacement : 〈r̄2(t)〉 ∼ tθ, θ = 0.56± 0.01

This is for the vacancy initially in the bulk. If we start with the
vacancy on the boundary, we find different exponents characteristic
of diffusion on spanning trees :

η0 = 0.61± 0.02

θ0 = 0.62± 0.02
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Our methods

finite-size scaling (via efficient counting)

numerical simulations (some via perfect algorithms)

few rigorous/exact results
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Counting via matrix-tree theorem

The number of spanning trees rooted at a site i0 on a graph is
det (∆i ,j)i ,j 6= i0 where ∆ is the Laplacian matrix :

∆i ,j =


di ≡ −

∑
j 6=i ∆ij for i = j

−1 for i , j neighbours
0 otherwise.

Webs can be counted by introducing a defect line (seam).

det (∆(a)i ,j)i ,j 6= i0 counts webs rooted at i0 and a weight

y = 2− a− a−1 per cycle, where :

∆(a)i ,j =


di ≡ −

∑
j 6=i ∆ij for i = j

−1 for a normal edge i , j
−a for a seam edge i → j
−a−1 for a seam edge j → j
0 otherwise.
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Counting via matrix-tree theorem

i0
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Applications

The number of dimer configurations with a fixed vacancy
corresponds to y = 4 and a = −1.

We consider dimers on a (4L + 1)× (4L + 1) grid with the vacancy
at the center, corresponding to webs on a (2L + 1)× (2L + 1) grid
with root at the center. Due to the fourfold rotational symmetry,
the determinant factorizes into :

ZL(y) = PL(α)PL(−α)PL(iα)PL(−iα)

with y = 2− α4 − α−4. PL(α) counts webs symmetric under
rotation.
We have computed PL(α) up to L = 60. Amusing conjecture :
PL(i) counts the number of dimer configurations on a cylinder of
height 2L and width 2L + 1.
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Asymptotic behaviour

We expect :

PL(α) ∼ c̃(α)
µL(L+1)λL

Lγ̃(α)

µ and λ are known from spanning trees [Duplantier-David] :

µ = exp

(
4G

π

)
= 3.209912300728158 · · ·

λ =
√

2− 1 G =
∞∑
i=0

(−1)i

(2i + 1)2
(Catalan’s constant)
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Asymptotic behaviour
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Asymptotic behaviour

For the critical exponent γ̃(α) we find :

γ̃(1) = 0.749999(1)

= 3/4

γ̃(−1) = −0.249999(1)

= −1/4

γ̃(i) = γ̃(−i) = 0.000000(1)

= 0

γ̃(e iπ/4) = γ̃(e−iπ/4) = 0.3125002(2)

= 5/16

γ̃(e3iπ/4) = γ̃(e−3iπ/4) = −0.187499(1)

= −3/16

This is consistent with the analytic expression :

γ̃(α) =
3

4
− e(2− e) α = e iπe 0 ≤ e ≤ 2
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Asymptotic behaviour
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Asymptotic behaviour
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Asymptotic behaviour

Back to ZL we find :

ZL(y) ∼ c(y)
µ(2L+1)2

λ4L

Lγ(y)

γ(y) = γ̃(α) + γ̃(−α) + γ̃(iα) + γ̃(−iα) y = 2− α4 − α−4

γ(0) = 1/2 (trees)

γ(4) = 1/4 (dimers)

The ratio ZL(0)/ZL(4) ∼ L−1/4 can be interpreted as the vacancy
delocalization probability on the finite grid.
This indicates that the vacancy remains localized as L→∞.
Another indication : at y = 4 the average number of cycles in a
web grows as 1

π2 ln L.
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Size distribution

For an infinite lattice, the “tree component” accessible to the
vacancy is almost surely finite. It has a size probability distribution
p(s) with

∑∞
s=1 p(s) = 1.

Using Monte-Carlo simulations we have estimated this probability
distribution on dimer grids up to size 401 (simulating webs with a
perfect sampling algorithm) or 1001 (periodic b.c. and pivot
algorithm).

p(s) ∼ s−δ with δ = 1.122± 0.008

We conjecture the exact value δ = 9/8, also in agreement with the
scaling relation γ(0)− γ(4) = 1/4 = 2(1− δ).
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Size distribution

Fit on s < 200

Free b.c.

Periodic b.c.

log10(s)

lo
g 1

0
(p

(s
))

6543210

0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10

Jérémie Bouttier



Size distribution

In particular there is a finite probability p(1) that the vacancy
cannot move at all (fully jammed). Through finite size scaling on
determinants, we better estimate :

p(1) = 0.10786437626904951198(1)

=
57

4
− 10
√

2

For p(2) we estimate :

p(2) = 0.055905353801942(1)

=
1

32
(72817

√
2− 102977)

These quantities (and some critical exponents) have been derived
recently by V.S. Poghosyan, V.B. Priezzhev and P. Ruelle in the
Toeplitz matrix formalism.
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Diffusion exponents

By Monte-Carlo simulations we studied the diffusion on spanning
trees and webs (i.e. vacancy moving from the boundary/bulk).

number of distinct sites visited : 〈N̄(t)〉 ∼ tη

η0 = 0.61± 0.02 (trees) η4 = 0.54± 0.03 (webs)

mean square displacement : 〈r̄2(t)〉 ∼ tθ

θ0 = 0.62± 0.02 (trees) θ4 = 0.56± 0.01 (webs)

Predictions : η = θ, η4 = (2− δ)η0 = 7/8η0

(as seen by a scaling argument : tη4 ∼ ∫ max(tη0 , s)p(s)ds)
In a less conclusive manner, our results would be consistent with
the simple values : η0 = 5/8 and η4 = 35/64.
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Conclusion

We find a weak localization for the vacancy, leading to a
non-trivial diffusive behaviour.

(Still) many open questions, especially regarding rigorous
results (domino tilings of the “holey square”).

Further directions :

how about the possible interactions between several vacancies
other lattices, e.g. the triangular lattice where a completely
different behaviour is expected (strong localization) [see recent
numerical results by Jeng et al.]
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Part II

Statistics of geodesics in large quadrangulations

Joint work with E. Guitter
Ref: J. Phys. A: Math. Theor. 41 145001 (2008),

arXiv:0712.2160, IOP Select
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Introduction

We consider random planar quadrangulations as introduced in the
talk of J.-F. Le Gall. We consider the “uniform” measure over all
quadrangulations with a finite number n of faces (possibly with
multiple edges, etc), and will be especially interested in the n→∞
limit. The general framework : viewing a quadrangulation as a
discrete random surface (metric space), what can be said about its
statistical properties ?

Though quadrangulations have been much studied since the 60s
(in combinatorics) and 80s (in physics), the seminal step came
during G. Schaeffer’s PhD (1998) in what is known as Schaeffer’s
bijection [Marcus-Schaeffer, Chassaing-Schaeffer...] between
rooted planar quadrangulations and well-labeled trees (different
from Cori-Vauquelin’s bijection).
Our approach is “complementary” to the continuous approach of
J.-F. Le Gall : we first delve into the discrete side, derive exact
discrete data, then take the continuous limit.
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Schaeffer’s bijection

We start from a rooted planar quadrangulation, and label every
vertex by its (graph) distance from the origin (of the root edge).

Due to properties of the graph distance, every planar
quadrangulation being bipartite, there exists 2 type of faces
(simple and confluent) and we apply the basic rules :

(a) (b)

i +2

i +1i +1 i +1 i +1

i i

i
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Schaeffer’s bijection

An example :

origin

(a) (b)

2 1

2

11

2

3

4

2

1
2

0

2 1

2

11

2

3

4

2

1
2
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Quadrangulations with a marked geodesic

If we mark an entire geodesic instead of an edge, the information
about it is “lost” in Schaeffer’s bijection, but the fix is “easy” :

(a) (c)(b) (d) (e)

0

1 1

2 2

3

i

i−1 i−1

i−2

0

1 1

2 2

3 3

i

i−1 i−1

0

1 1

2 2

3

i

i−1 i−1

i−2

0

1

2

3

i

i−1

1

2

3

i

i−1

We obtain a spine tree.
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Quadrangulations with a geodesic boundary

However not all spine trees are obtained this way. The actual
bijection involves quadrangulations with a geodesic boundary.

(a) (b)

1j+ 1j+

1

i

0

1 1

i

j j
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Quadrangulations with a geodesic boundary

However not all spine trees are obtained this way. The actual
bijection involves quadrangulations with a geodesic boundary.
Quadrangulations with a marked geodesic correspond to irreducible
quadrangulations with a geodesic boundary.

(b)(a)

0

1 1

2 2

i

i−1 i−1

2i−

3

0

1

2

3

i

i−1

i

i−1 i−1

2i−

3

2

0

1 1
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Enumeration

Our basic object is the generating function for well-labeled trees :

Ri = 1 + gRi (Ri−1 + Ri + Ri+1)

where g is a weight per edge(tree)/face(quadrangulation), i is the
label of the root vertex. Labels are positive so the equation holds
for i > 0 only, with convention R0 = 0. NB : “original”
well-labeled trees correspond to R1.

Theorem [B., Di Francesco, Guitter 2003]

Ri = R
(1− x i )(1− x i+3)

(1− x i+1)(1− x i+2)

where R, g are power series in g defined by :

R = 1 + 3gR2

x +
1

x
+ 1 =

1

gR2
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Enumeration

We deduce the generating function for spine trees of length i (i.e.
quadrangulations with a geodesic boundary of length 2i) :

Zi =
i∏

j=1

Rj = R i (1− x)(1− x i+3)

(1− x3)(1− x i+1)

Quadrangulations with a marked geodesic are obtained through :

Ui = Zi −
i−1∑
j=1

UjZi−j
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Confluent geodesics

For “free” we also get quadrangulations with k confluent geodesics.

U
(k)
i = (Zi )

k −
i−1∑
j=1

U
(k)
j (Zi−j)

k (weakly avoiding)

Ũ
(k)
i = (Ui )

k (strongly avoiding)

(a) (b) (c)

i

0

i

0

i

0
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Statistics

Large n asymptotics are obtained by expansion around the critical
point g = 1/12. For instance :

Zi = Ai + Ci
ξ2

n
+

2

3
iDi

ξ3

n3/2
+ · · ·

g =
1

12

(
1 +

ξ2

n

)
Ai =

2i (i + 3)

3(i + 1)

Zi |gn ∼ 12nDi

2
√
πn5/2

=
12n

√
πn5/2

2i i(i + 2)(i + 3)(i + 4)(3i2 + 12i + 13)

840(i + 1)

(i finite)

A natural normalization is to divide by

Cn,i = log(Ri/Ri−1)|gn ∼ 12n

√
πn5/2

3i3

7
, i →∞

corresponding to quadrangulations with two marked points at
distance i .
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Results

Ui |gn/Cn,i ∼ 3× 2i : average number of geodesics between
two points

U
(k)
i |gn/Cn,i ∼ k(3× 2i )k : average number of k-tuples of

weakly avoiding geodesics

Ũ
(k)
i |gn/Cn,i ∼ k(3× 2i )k4k−1i3−3k : average number of

k-tuples of strongly avoiding geodesics

other computations :

two weakly avoiding geodesics have an extensive number of
contacts (∝ i/3)

they remain “close” in the sense that they delimit two regions,
one being always finite (area ∝ i3) and the other infinite (area
∝ n)
this is not true for strongly avoiding geodesics : pairs of point
linked by distinct geodesics become “rare” in the i →∞ limit

results remain mostly true in the scaling limit i ∝ n1/4
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Conclusion

Our discrete approach enables to study the statistics of
geodesics in large quadrangulations in a computational
manner.

Work in progress : an interesting connection with heaps

Other directions : find other observables, connect with the
continuous approach, study more general classes of maps
(matter...)
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