Fractal Superconductivity near Localization Threshold

Mikhail Feigel’man
Landau Institute, Moscow

In collaboration with:
Vladimir Kravtsov ICTP Trieste
Emilio Cuevas Murcia Univ.
Lev Ioffe Rutgers Univ.

Discussions: Markus Mueller, Geneva Univ.

Short publication: Phys Rev Lett. 98, 027001 (2007)
Plan of the talk

1. Motivation from experiments
2. Hard-gap insulator due to electron pairing on localized states
3. BCS-like theory for critical eigenstates
4. Superconductivity with pseudogap and S-I transition
Example: Disorder-driven S-I transition in TiN thin films

Specific Features of Direct SIT:

- **Insulating behaviour of the $R(T)$ separatrix**
- On insulating side of SIT, low-temperature resistivity is activated: $R(T) \sim \exp(T_0/T)$
- Crossover to VRH at higher temperatures
- Seen in TiN, InO, Be (extra thin) – all are amorphous, with low electron density

There are other types of SC suppression by disorder!
Superconductivity v/s Localization

• Granular systems with Coulomb interaction
 K.Efetov 1980 et al “Bosonic mechanism”

• Coulomb-induced suppression of Tc in uniform films “Fermionic mechanism”
 A.Finkelstein 1987 et al

• Competition of Cooper pairing and localization (no Coulomb)
 Imry-Strongin, Ma-Lee, Kotliar-Kapitulnik, Bulaevsky-Sadovsky(mid-80’s)
 Ghosal, Randeria, Trivedi 2001

There will be no grains and no Coulomb in this talk!
Experimental puzzle: Localized Cooper pairs

D. Shahar & Z. Ovadyahu
amorphous InO 1992

V. Gantmakher et al
InO
D. Shahar et al
InO
T. Baturina et al
TiN
Strongly insulating InO and nearly-critical TiN

$d = 20 \text{ nm}$
$T_0 = 15 \text{ K}$
$R_0 = 20 \text{ k}\Omega$

I_2: $T_0 = 0.38 \text{ K}$
$R_0 = 20 \text{ k}\Omega$

What is the charge quantum? Is it the same on left and on right?
Giant magnetoresistance near SIT
(Samdanmurthy et al, PRL 92, 107005 (2004))

FIG. 2: ρ versus B isotherms (a) at a low B range for film Maf at T's = 0.24, 0.60, 0.78, 0.98 and 1.13 K (b) at a large B range for sample Nalc at T's 0.07, 0.16, 0.35, 0.62 and 1.00 K. The critical point of the B-driven SIT, B_c, is indicated by the vertical arrow.
Phase Diagram

- Mott-law Insulator
- Hard Gap Insulator
- Metal
 - B_{MI}
- Superconductor (SC)
- B_C
Theoretical model

Simplest BCS attraction model, but for localized electrons

\[H = H_0 - g \int d^3r \, \Psi_{\uparrow}^\dagger \Psi_{\downarrow}^\dagger \Psi_{\downarrow} \Psi_{\uparrow} \]

\[\Psi = \sum c_j \Psi_j (r) \quad \text{Basis of localized eigenfunctions} \]

M. Ma and P. Lee (1985)
S-I transition at \(\delta \approx T_c \)
Localization length L_{loc} is finite but large

\[H = \sum_{j\sigma} \xi_j c_{j\sigma}^\dagger c_{j\sigma} - \frac{\lambda}{\nu_0} \sum_{i,j,k,l} M_{ijkl} c_{i\uparrow}^\dagger c_{j\downarrow}^\dagger c_{k\downarrow} c_{l\uparrow}, \]

where

\[M_{ijkl} = \int d\mathbf{r} \psi_i(r) \psi_j(r) \psi_k(r) \psi_l(r) \]

\[\lambda = g \nu_0 \]

Wavefunction’s fractality

\[M_{ij} = \int \psi_i^2(r) \psi_j^2(r) d^d r \]

\[M_j = \int \psi_j^4(r) d^d r \propto L_{\text{loc}}^{-D_2} \]

\[D_2 = 1.30 \pm 0.05 \]

All other (off-diagonal) terms: beyond BCS MFA
INSULATING STATE AT LARGE \(\delta_L = (\nu_0 L_{loc}^3)^{-1} \)

Typical value of superdiagonal matrix element:

\[
\tilde{M} = L_0^{-3}(L_{loc}/L_0)^{-D_2}
\]

where \(L_0 \) is the short-scale cutoff length of the fractal behaviour.

K. Matveev and A. Larkin 1997: Parity gap in ultrasmall grains

\[
\Delta \ll \delta: \quad \text{no many-body correlations}
\]

\[
\Delta_P = \frac{1}{2} \lambda \delta \quad \lambda_R = \lambda/(1 - \lambda \log(\epsilon_0/\delta)).
\]

\[
\Delta_P = \frac{\delta}{2 \ln \frac{\delta}{\Delta}}
\]
Parity gap for Anderson-localized eigenstates

The increase of thermodynamic potential Ω due to addition of odd electron to the ground-state is

$$\delta \Omega_{\text{oe}} = \xi_{m+1} = \xi_{m+1} - \tilde{\xi}_{m+1} + \tilde{\xi}_{m+1} = \frac{g}{2} M_{m+1} + O(V^{-1})$$

$$\tilde{\xi}_j = \xi_j - \frac{g}{2} M_j$$

Energy of two single-particle excitations due to depairing:

$$2\Delta_P = \xi_{m+1} - \xi_m + g M_m = \frac{g}{2} (M_m + M_{m+1}) + O(V^{-1})$$
Typical value of superdiagonal matrix element:

\[\bar{M} = L_0^{-3} (L_{loc}/L_0)^{-D_2} \]

where \(L_0 \) is the short-scale cutoff length of the fractal behaviour.

\[\Delta_P = \frac{\lambda}{2} E_0 \left(\frac{L_0}{L_{loc}} \right)^{D_2} \propto (E_m - E_F)^{\nu D_2} \]

where

\[E_0 = \frac{1}{\nu_0 L_0^3} \ll E_F \]
Average Density of States

\[\rho(E) = \sum_{M, \ell} \delta(E - \min(M \pm \ell \lambda_{\ell})) \frac{M \lambda_{\ell}}{2V} \]

no coherence peak!

[Ghosal et al 2001]

effective gap \(\Delta_p \)
P(M) distribution
Activation energy T_1 from Shahar-Ovadyahu exp. and fit to theory

FIG. 10: Experimental values of the gap from Ref.34, T_1 (boxes) and a fit to the equation (61) with $\nu = 1$, $D_2 = 1.3$. The only fitting parameter was the constant $A = 0.15\lambda E_0$; the data points of Ref.[1] correspond to $E_0 \approx 300K$ at $\lambda \approx 0.2$ extracted from the BCS value of $T_c \approx 3K$ for less disordered samples34 and $\omega_D \approx 500K$. The value of σ_c was determined from high T data. Application of scaling formulas to the data shown here is justified by the large value of $L_{nc} > 30\AA$ of the most disordered sample shown in this plot. This estimate comes from the analysis using Mott temperature which characterizes the resistivity of even more disordered sample presented in21 for intermediate temperatures.
Shahar-Ovadyahu 1992

\(\delta_L \sim \frac{1}{V} L_a^{-3} \sim (n-n_c)^3 \)
Superconductivity at the Localization Threshold: $T_c \gg \delta_L$

Now we will consider the case of Fermi energy very close to the mobility edge: single-electron states are extended but fractal and populate small fraction of the whole volume.

How BCS theory should be modified to account for eigenstate’s fractality?
Mean-Field Eq. for T_c

$$\Delta(r) = \int K_T(r, r') \Delta(r') d^{d-1}r'$$ \hspace{1cm} (9)

where kernel \hat{K}_T is equal to

$$K_T(r, r') = \frac{\lambda}{2\nu_0} \sum_{ij} \frac{\tanh \frac{\xi_i}{2T} + \tanh \frac{\xi_j}{2T}}{\xi_i + \xi_j} \psi_i(r)\psi_j(r)\psi_i(r')\psi_j(r')$$ \hspace{1cm} (10)

Standard averaging over space $\Delta(r) \rightarrow \overline{\Delta}$ leads to "Anderson theorem" result: totally incorrect in the present situation.

The reason: critical eigenstates $\psi_j(r)$ are strongly correlated in real 3D space, they fill some small submanifold of the whole space only.
In fact one should define T_c as the divergence temperature of the Cooper ladder

$$C = \left(1 - \hat{K}\right)^{-1}$$

Thus averaging procedure should be applied to C instead of K.

We expand C in powers of K and average over disorder realizations. Keeping main sequence of resulting diagramms only, we come to the following equation for determination of T_c:

$$\Phi(\xi) = \frac{\lambda}{2} \int \frac{d\xi' \tanh(\xi' / 2T)}{\xi'} M(\xi - \xi')\Phi(\xi')$$

(11)
$$M(\omega) = \mathcal{V} M_{ij} = \int \frac{\psi_i^2(r) \psi_j^2(r)}{d^d r} \text{ for } |\xi_i - \xi_j| = \omega$$

For critical eigenstates

$$L_{loc} \to \infty$$

one finds

$$M(\omega) = \left(\frac{E_0}{\omega} \right)^\gamma$$

where

$$\gamma = 1 - \frac{D_2}{d}$$

is a measure of fractality

Usual "dirty superconductor":

$$M(\omega) = 1 \quad \gamma = 0$$

3D Anderson model: $\gamma = 0.57$
Modified mean-field approximation for critical temperature T_c

$$\Delta(\xi) = \frac{\lambda}{2} \int d\zeta \eta(\zeta) M(\xi - \zeta) \Delta(\zeta)$$

$$\eta_i \equiv \eta_{ii} = \xi^{-1}_i \tanh(\xi_i / 2T).$$

$$T^0_c(\lambda, \gamma) = E_0 \lambda^{1/\gamma} C(\gamma)$$

For small λ this T_c is higher than BCS value!
The above equation for T_c is equivalent to the neglect in the Hamiltonian "off-diagonal" terms. We employ eigenfunction expansion of the gap function $\Delta(r)$ and use the idea that pairing amplitude

$$F_j = \langle c_{j\uparrow} c_{j\downarrow} \rangle = F(\xi_j)$$

is a smooth function of the bare energy ξ_j:

$$F(\xi) = \frac{\Delta(\xi)}{\sqrt{\Delta^2(\xi) + \xi^2}} \tanh \frac{\sqrt{\Delta^2(\xi) + \xi^2}}{2T}$$

where

$$\Delta(\xi) = \lambda \int d\xi' M(\xi - \xi') F(\xi')$$

Then local pairing amplitude:

$$F(r) = \sum_j \psi_j^2 \langle c_{j\uparrow} c_{j\downarrow} \rangle \equiv \sum_j \psi_j^2 F_j$$

fluctuates strong in real space

Volume fraction $\left(\frac{T_c}{E_0}\right)^\gamma \ll 1$
Fluctuations of SC order parameter

With Prob = \(p \ll 1 \) \(\Delta(r) = \Delta \), otherwise \(\Delta(r) = 0 \)

\[
\frac{(\tilde{\Delta}(r))^2}{(\bar{\Delta}(r))^2} = \lambda Q(\gamma) = \frac{Q(\gamma)}{C^\gamma(\gamma)} \left(\frac{T_c}{E_0} \right)^\gamma \ll 1
\]

SC fraction = prefactor \(\approx 1.7 \) for \(\gamma = 0.57 \)

\[
\frac{(\tilde{\Delta}(r))^n}{(\bar{\Delta}(r))^n} \propto \left(\frac{T_c}{E_0} \right)^{1-d_n/d}(n-1)
\]

Higher moments:
Critical temperature T_c is well-defined through the whole system in spite of strong $\Delta(r)$ fluctuations.
Superconductivity with Pseudogap

Now we move Fermi-level into the range of localized eigenstates.

Both local pairing (like in insulator) and collective pairing are present.
Self-consistent "gap equation" in terms of $\Delta(\xi)$:

$$\Delta(\xi) = \lambda \int d\xi' M(\xi - \xi') \frac{\Delta(\xi)}{\sqrt{\Delta^2(\xi) + \xi^2}} \tanh \frac{\sqrt{\Delta^2(\xi) + \xi^2}}{2T}$$

Dimensional analysis of the Mean Field equation:

$$T_c = C(\gamma) E_0 \lambda^{1/\gamma}$$

$$\Delta(\xi = 0, T = 0) = D(\gamma) E_0 \lambda^{1/\gamma}$$

Functions $C(\gamma)$ and $D(\gamma)$ were found numerically:

Now we can relate **collective gap** $\Delta(0)$ and **local pairing gap** Δ_P:

$$\Delta_P = \frac{1}{2D\gamma(\gamma)} \delta_L \left(\frac{\Delta(0)}{\delta_L} \right)^\gamma$$

where $\delta_L = \frac{1}{\nu_0 L^3_{\text{loc}}}$ - typical level spacing inside localization volume.

Compare with Matveev-Larkin result:

$$\Delta_P = \frac{\delta}{2 \ln \frac{\delta}{\Lambda}}$$
3D Anderson insulator: $M(\omega)$

No saturation at $\omega < \delta_L$:
$M(\omega) \sim \ln^2 (\delta_L / \omega)$
(Cuevas & Kravtsov 1997)

Superconductivity with $T_c < \delta_L$ is possible

Then “local gap”

$$\Delta_P = \frac{1}{2D^{\gamma(\gamma)}} \delta_L \left(\frac{\Delta(0)}{\delta_L} \right)^\gamma$$

exceeds T_c!

This region was not found by Ma&Lee
T_c versus Pseudogap
At $T = T_c$ - almost fully developed gap but no coherence peak

Full 1-particle gap is a sum of insulating and superconductive contributions
Contribution of single-electron states is suppressed by pseudogap.

\[S^+ = a^+_\mu a^+_\nu, \quad S^- = a_{\mu} a_{\nu}, \quad 2S^z = a^+_\mu a_{\mu} + a^+_\nu a_{\nu} \]

H_{Brs} acts on **Even Sector**:
all states which are 2-filled or empty.
"Pseudospin" approximation

\[\hat{H} = \sum_{\mu} 2 \xi_{\mu} S_{\mu}^z - g \sum_{\mu, \nu} M_{\mu \nu} S_{\mu}^+ S_{\nu}^- + \sum_{B_{\mu}} (\xi_{\mu} + \frac{g_{\mu}}{2}) \]

\[\bar{M}_{\mu \nu} = \frac{1}{V} M(\xi_{\mu} - \xi_{\nu}) \]

Effective number of interacting neighbours
Critical temperature in the pseudogap regime

MFA:

\[\Delta(\xi) = \frac{\lambda}{2} \int d\zeta \eta(\zeta) M(\xi - \zeta) \Delta(\zeta) \]

Take the same

\[\eta_i \equiv \eta_{ii} = \xi_i^{-1} \tanh(\xi_i / 2T). \]

but replace \(2T \to T \)

MFA is OK as far as \(Z \sim \nu_0 T_c L_{loc}^d \) is large
Third Scenario

- **Bosonic mechanism**: preformed Cooper pairs + competition Josephson v/s Coulomb – SIT in arrays

- **Fermionic mechanism**: suppressed Cooper attraction, no paring – SMT

- **Pseudospin mechanism**: individually localized pairs
 - SIT in amorphous media, fractal superconductivity
 - SIT occurs at small Z and lead to paired insulator

The origin of the transport gap:

Mobility edge for hopping pairs
S-I Transition

- Hamiltonian of the pseudospin array:

\[
H = 2 \sum_i \xi_i s_i^z - \sum_{ij} M_{ij} (s_i^x s_j^x + s_i^y s_j^y)
\]

\[
Z \sim v_0 T_c L_{loc}^d
\]

At \(Z \ll 1 \) Insulating state is realized: localized pairs

How can we describe quantum phase transition?
S-I transition on Cayley tree example with branching number $q = 3$

Hamiltonian:

$$H = 2 \sum_i \xi_i s_i^z - \sum_{ij} M_{ij} (s_i^x s_j^x + s_i^y s_j^y) \tag{1}$$

Eq. (1) contains random energies ξ_i

Full self-consistent equation can be written for distribution functions

$$\Delta(x) = \frac{\lambda}{2} x [\tanh(\beta x)]^{-1} \int_{-W/2}^{W/2} dy \Delta(y) \frac{\tanh(\beta e_+) \tanh(\beta e_-)}{e_+ e_-} \tag{2}$$

Eigenvalues of 2-spin problem

$$e_{\pm} = \frac{1}{2} \left[x + y \pm \sqrt{(x - y)^2 + M^2} \right]$$
“Phase diagram”
and spectrum of collective modes

\[T_c(\infty) = W \exp(-1/\lambda) \]

Continuous spectrum: \(N \)

Discrete spectrum: Insulator

Many-body localization?

Superconductor

\[q_1 \approx \exp(1/\lambda) \]
S-I transition in real space?

- Very strong mesoscopic fluctuations
- Effective coordination number $Z < 1$
- Formation of SC droplets in the I matrix (or vice-verse) is unavoidable
- These droplets are pieces of fractal superconductive state and not the usual SC grains
Major unsolved problems (theor)

• 1. Role of Coulomb enhancement near mobility edge ? (this effect was treated by Finkelstein for metal thin-film case)

• 2. How to include magnetic field into the “fractal” scheme ?

• 3. Transition between pseudogap SC and insulator. Why Cooper pair transport is activated ?
Conclusions

- Pairing of electrons on localized states leads to hard gap and Arrhenius resistivity for 1e transport.
- Pairing on nearly-critical states produces fractal superconductivity with relatively high T_c but very small superconductive density.
- Pseudogap behaviour is expected near S-I transition, with "insulating gap" exceeding T_c.
- Insulator appears from Superconductor via First-Order transition.
T_c from 3 different calculations

Modified MFA equation leads to:

$$T_c = (6.5 \pm 0.8) \lambda^{1.77}$$
Qualitative features of “Pseudogap Superconductivity”:

- STM DoS evolution with T - shown for $InOx$
- anomaly in fluctuational Nernst effect: studied by P. Spathis, H. Aubin et al in $InOx$
- Nonconservation of full spectral weight across T_c : found before in underdoped HTSC, not measured yet near SIT
Features of the S-I transitions

Observed in: amorphous InO thin TiN ultrathin Be
(Possible in: Boron-doped Diamond)

- Insulating behaviour of the $R(T)$ separatrix
- On insulating side of SIT, low-temperature resistivity is activated: $R(T) \sim \exp(T_0/T)$
- Crossover to VRH at higher temperatures
- Negative magnetoresistance is seen at high magnetic fields on both sides of SIT
- Positive magnetoresistance at low fields in insulating samples not far from the SIT

No “universal resistance” at the S-I transition