Optimal Cooperation in Large Wireless Networks

Ayfer Özgür, Olivier Lévêque
Ecole Polytechnique Fédérale de Lausanne
Switzerland

David Tse
University of California
Berkeley, USA

Spatial Network Models for Wireless Communications
Cambridge, April 9, 2010
Percolation?
Percolation?

<table>
<thead>
<tr>
<th></th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Percolation?

\[p \approx 0.5416 \]
Optimal Cooperation in Large Wireless Networks

Ayfer Özgür, Olivier Lévêque

Ecole Polytechnique Fédérale de Lausanne
Switzerland

David Tse

University of California
Berkeley, USA

Spatial Network Models for Wireless Communications
Cambridge, April 9, 2010
Simple network model
Simple network model

- **uniform topology:**

 n nodes independently and uniformly distributed in a square area A
Simple network model

- **uniform topology:**
 - n nodes independently and uniformly distributed in a square area A
- **uniform traffic:**
 - order n source-destination pairs chosen at random in the network
Question

What is the maximum throughput scaling in such a network?
Question

What is the maximum **throughput scaling** in such a network?

- **per-node throughput**: $R(n) =$ data rate per S-D pair
What is the maximum throughput scaling in such a network?

- per-node throughput: $R(n) = \text{data rate per S-D pair}$
- aggregate throughput: $T(n) = n R(n)$
Communication model

\[y_i = \sum_{k \in \tau} h_{ik} x_k + z_i \]

- \(\{x_k, k \in \tau\} = \) transmitted signals - power \(P \) each
Communication model

\[y_i = \sum_{k \in \tau} h_{ik} x_k + z_i \]

- \(\{ x_k, k \in \tau \} = \) transmitted signals - power \(P \) each
- \(z_i = \) background noise at node \(i \) - unit power
Communication model

\[y_i = \sum_{k \in \tau} h_{ik} x_k + z_i \]

- \(\{x_k, k \in \tau\} = \) transmitted signals - power \(P \) each
- \(z_i = \) background noise at node \(i \) - unit power
- \(y_i = \) received signal at node \(i \)
Communication model

\[y_i = \sum_{k \in \tau} h_{ik} x_k + z_i \]

- \(\{x_k, k \in \tau\} = \) transmitted signals - power \(P \) each
- \(z_i = \) background noise at node \(i \) - unit power
- \(y_i = \) received signal at node \(i \)
- \(h_{ik} = \) fading coefficient between node \(k \) and \(i \), modelled as

\[h_{ik} = \sqrt{G} \frac{\exp(2\pi j r_{ik}/\lambda)}{r_{ik}} \]

where \(\lambda \) is the carrier wavelength
Communication model

\[y_i = \sum_{k \in \tau} h_{ik} x_k + z_i \]

- \(\{x_k, k \in \tau\} \) = transmitted signals - power \(P \) each
- \(z_i \) = background noise at node \(i \) - unit power
- \(y_i \) = received signal at node \(i \)
- \(h_{ik} \) = fading coefficient between node \(k \) and \(i \), modelled as

\[h_{ik} = \sqrt{G} \frac{\exp(2\pi j r_{ik}/\lambda)}{r_{ik}} \]

where \(\lambda \) is the carrier wavelength

- free space propagation model: no scatterers, path loss exponent \(\alpha = 2 \)
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area A
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area A \Rightarrow new communication schemes
Two sets of results in the literature (non-exhaustive list)

- **dense networks:** increasing number of nodes n, fixed power per node P, fixed network area $A \Rightarrow$ new communication schemes

- **extended networks:** increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area $A \Rightarrow$ new communication schemes

- **extended networks**: increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes \(n \), fixed power per node \(P \), fixed network area \(A \) \(\Rightarrow \) new communication schemes
 - Gupta-Kumar ’00

- **extended networks**: increasing number of nodes \(n \), fixed power per node \(P \), network area \(A \) increasing linearly with the number of users \(\Rightarrow \) information-theoretic limits
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area $A \Rightarrow$ new communication schemes
 - Gupta-Kumar ’00
 - Dousse-Franceschetti-Thiran-Tse ’05

- **extended networks**: increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes \(n \), fixed power per node \(P \), fixed network area \(A \) \(\Rightarrow \) new communication schemes
 - Gupta-Kumar '00
 - Dousse-Franceschetti-Thiran-Tse '05
 - Aeron-Saligrama '07

- **extended networks**: increasing number of nodes \(n \), fixed power per node \(P \), network area \(A \) increasing linearly with the number of users \(\Rightarrow \) information-theoretic limits
Two sets of results in the literature (non-exhaustive list)

- **dense networks:** increasing number of nodes n, fixed power per node P, fixed network area $A \Rightarrow$ new communication schemes
 - Gupta-Kumar '00
 - Dousse-Franceschetti-Thiran-Tse '05
 - Aeron-Saligrama '07
 - Özgür-L-Tse '07

- **extended networks:** increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
Two sets of results in the literature (non-exhaustive list)

- **dense networks:** increasing number of nodes n, fixed power per node P, fixed network area $A \Rightarrow$ new communication schemes
 - Gupta-Kumar ’00
 - Dousse-Franceschetti-Thiran-Tse ’05
 - Aeron-Saligrama ’07
 - Özgür-L-Tse ’07

- **extended networks:** increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
 - Kumar-Xie ’04, ’06
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area A \Rightarrow new communication schemes
 - Gupta-Kumar ’00
 - Dousse-Franceschetti-Thiran-Tse ’05
 - Aeron-Saligrama ’07
 - Özgür-L-Tse ’07

- **extended networks**: increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
 - Kumar-Xie ’04, ’06
 - Jovicic-Viswanath-Kulkarni ’04
Two sets of results in the literature (non-exhaustive list)

- **dense networks**: increasing number of nodes n, fixed power per node P, fixed network area A ⇒ new communication schemes
 - Gupta-Kumar ’00
 - Dousse-Franceschetti-Thiran-Tse ’05
 - Aeron-Saligrama ’07
 - Özgür-L-Tse ’07

- **extended networks**: increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users ⇒ information-theoretic limits
 - Kumar-Xie ’04, ’06
 - Jovicic-Viswanath-Kulkarni ’04
 - L-Telatar ’05
Two sets of results in the literature (non-exhaustive list)

- **dense networks:** increasing number of nodes n, fixed power per node P, fixed network area A \Rightarrow new communication schemes
 - Gupta-Kumar ’00
 - Dousse-Franceschetti-Thiran-Tse ’05
 - Aeron-Saligrama ’07
 - Özgür-L-Tse ’07

- **extended networks:** increasing number of nodes n, fixed power per node P, network area A increasing linearly with the number of users \Rightarrow information-theoretic limits
 - Kumar-Xie ’04, ’06
 - Jovicic-Viswanath-Kulkarni ’04
 - L-Telatar ’05
 - Franceschetti-Migliore-Minero ’09
Claim

- there is not one universal scaling law for wireless networks
there is not one universal scaling law for wireless networks
so coupling the system parameters is not a good idea
Claim

- there is not one universal scaling law for wireless networks
- so coupling the system parameters is not a good idea
- instead, consider the following parameters to be independent:
Claim

- there is not one universal scaling law for wireless networks
- so coupling the system parameters is not a good idea
- instead, consider the following parameters to be independent:

 number of nodes n
Claim

- there is not one universal scaling law for wireless networks
- so coupling the system parameters is not a good idea
- instead, consider the following parameters to be independent:

 number of nodes \(n \)

 power per node \(P \)
Claim

- there is not one universal scaling law for wireless networks
- so coupling the system parameters is not a good idea
- instead, consider the following parameters to be independent:

 number of nodes n
 power per node P
 network area A
Our plan

Characterize the maximum throughput scaling of the network when

1. \(n \) grows large and there is neither power nor space limitation (i.e. \(P \) and \(A \) are “as large as we want”)
Our plan

Characterize the maximum throughput scaling of the network when

1. n grows large and there is neither power nor space limitation (i.e. P and A are “as large as we want”)

2. n grows large, but there is power limitation (i.e. P is the limiting factor)
Our plan

Characterize the maximum throughput scaling of the network when

1. n grows large and there is neither power nor space limitation (i.e. P and A are “as large as we want”)

2. n grows large, but there is power limitation (i.e. P is the limiting factor)

3. n grows large, but there is space limitation (i.e. A is the limiting factor)
1. No power or space limitation
1. No power or space limitation

Question:

Is the number of nodes itself a factor limiting the per-node throughput?
Time-division

one communication at a time in the network
Time-division

one communication at a time in the network
Time-division

one communication at a time in the network

per-node throughput $R(n) = \Theta(1/n)$
Multi-hop (Gupta-Kumar ’00)

- spatial reuse: order n local simultaneous communications are feasible
Multi-hop (Gupta-Kumar ’00)

- spatial reuse: order n local simultaneous communications are feasible
- relaying burden: order \sqrt{n} hops are needed to reach destinations
Multi-hop (Gupta-Kumar ’00)

- spatial reuse: order n local simultaneous communications are feasible
- relaying burden: order \sqrt{n} hops are needed to reach destinations

per-node throughput $R(n) = \Theta(1/\sqrt{n})$
Parenthesis: distributed MIMO systems

between two clusters of M nodes, it is possible to transfer M information bits simultaneously (provided no power or space limitation!)
Parenthesis: distributed MIMO systems

- between two clusters of M nodes, it is possible to transfer M information bits simultaneously (provided no power or space limitation!)
- but this requires first a dissemination phase at the transmit cluster
between two clusters of M nodes, it is possible to transfer M information bits simultaneously (provided no power or space limitation!)

but this requires first a dissemination phase at the transmit cluster

... as well as an aggregation phase at the receive cluster
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
- second phase: long range MIMO transmissions across the network
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
- second phase: long range MIMO transmissions across the network
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
- second phase: long range MIMO transmissions across the network
- third phase: local exchange of information inside clusters of nodes
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
- second phase: long range MIMO transmissions across the network
- third phase: local exchange of information inside clusters of nodes
- recursion: perform the same operation inside clusters now
Hierarchical cooperation scheme (Özgür-L-Tse ’07)

- first phase: local exchange of information inside clusters of nodes
- second phase: long range MIMO transmissions across the network
- third phase: local exchange of information inside clusters of nodes
- recursion: perform the same operation inside clusters now
- after \(h \) levels of recursion: per-node throughput \(R(n) = \Theta \left(n^{-\frac{1}{h+1}} \right) \)
in a network with a large number of nodes, it is possible to sustain a per-node throughput arbitrarily close to $\Theta(1)$ (provided that there is neither power nor space limitation)
2. Power limitation
2. Power limitation

Question:

does hierarchical cooperation still outperform multi-hop in this case?
Power requirements

- multi-hop transmissions require \(SNR = \frac{P}{d^2} \geq 0 \text{ dB}, \)
 where \(d = \text{average distance between nearby nodes} \)
Power requirements

- multi-hop transmissions require $SNR = P/d^2 \geq 0 \text{ dB}$, where $d =$ average distance between nearby nodes
- what about long range MIMO transmissions?
Power requirements

- multi-hop transmissions require $SNR = \frac{P}{d^2} \geq 0$ dB, where $d =$ average distance between nearby nodes
- what about long range MIMO transmissions?
 - communication distance \sim network diameter $= D \sim \sqrt{n} \ d$
Power requirements

- Multi-hop transmissions require $SNR = \frac{P}{d^2} \geq 0$ dB, where $d =$ average distance between nearby nodes.
- What about long range MIMO transmissions?
 - Communication distance \sim network diameter $= D \sim \sqrt{n} \cdot d$
 - MIMO gain: in a MIMO transmission involving n nodes, the power received at each node is amplified by a factor n.
Power requirements

- multi-hop transmissions require $SNR = P/d^2 \geq 0 \text{ dB}$, where $d =$ average distance between nearby nodes
- what about long range MIMO transmissions?
 - communication distance \sim network diameter $= D \sim \sqrt{n} d$
 - **MIMO gain**: in a MIMO transmission involving n nodes, the power received at each node is amplified by a factor n
 - \Rightarrow same condition: $SNR = P/d^2 \geq 0 \text{ dB}$
Power requirements

- multi-hop transmissions require $SNR = P/d^2 \geq 0$ dB, where $d =$ average distance between nearby nodes
- what about long range MIMO transmissions?
 - communication distance \sim network diameter $= D \sim \sqrt{n} d$
 - MIMO gain: in a MIMO transmission involving n nodes, the power received at each node is amplified by a factor n
 - \Rightarrow same condition: $SNR = P/d^2 \geq 0$ dB
- so hierarchical cooperation still outperforms multi-hop in this case, and a per-node throughput $R(n)$ arbitrarily close to $\Theta(1)$ is achievable
And below? (i.e. when $SNR \ll 0 \text{ dB}$)

- how to compensate for the lack of available power?
And below? (i.e. when $\text{SNR} \ll 0 \text{ dB}$)

- how to compensate for the lack of available power?
- a simple solution: bursty transmissions!
 - i.e. wait for a duration of $1/\text{SNR}$ time-slots before any transmission
And below? (i.e. when $SNR \ll 0 \text{ dB}$)

- how to compensate for the lack of available power?
- a simple solution: **bursty transmissions!**
 i.e. wait for a duration of $1/SNR$ time-slots before any transmission
- \Rightarrow per-node throughput $R(n)$ arbitrarily close to $\Theta(SNR)$
Conclusion #2

- when there is power limitation but no space limitation, hierarchical cooperation achieves the optimal throughput scaling
Conclusion #2

- when there is power limitation but no space limitation, hierarchical cooperation achieves the optimal throughput scaling

- a per-node throughput $R(n)$ arbitrarily close to $\Theta(1)$ can be maintained, provided that $SNR = P/d^2 \geq 0 \text{ dB}$
when there is power limitation but no space limitation, hierarchical cooperation achieves the optimal throughput scaling

a per-node throughput $R(n)$ arbitrarily close to $\Theta(1)$ can be maintained, provided that $SNR = P/d^2 \geq 0$ dB

rephrasing in terms of the aggregate throughput: an aggregate throughput $T(n)$ arbitrarily close to $\Theta(n)$ is achievable, provided that $SNR = P/d^2 \geq 0$ dB.
Conclusion #2

- when there is power limitation but no space limitation, hierarchical cooperation achieves the optimal throughput scaling.

- a per-node throughput $R(n)$ arbitrarily close to $\Theta(1)$ can be maintained, provided that $SNR = P/d^2 \geq 0$ dB.

- rephrasing in terms of the aggregate throughput: an aggregate throughput $T(n)$ arbitrarily close to $\Theta(n)$ is achievable, provided that $SNR = P/d^2 \geq 0$ dB.

Remark:
The situation where the power path loss exponent $\alpha > 2$ is a different story! (see Özgür-Johari-Tse-L, Trans. on IT 2010).
3. Space limitation
3. Space limitation

Question:

does hierarchical cooperation still outperform multi-hop in this case?
Space limitation

Franceschetti-Migliore-Minero, Trans. on IT 2009:

In an extended network, $T(n) = O(\sqrt{n})$.
Franceschetti-Migliore-Minero, Trans. on IT 2009:

In an extended network, \(T(n) = O(\sqrt{n}) \).

In a more general context, this result translates into:

\[
T(n) = \begin{cases}
O(\sqrt{n}) & \text{if } \sqrt{A}/\lambda \leq \sqrt{n} \\
O(\sqrt{A}/\lambda) & \text{if } \sqrt{n} \leq \sqrt{A}/\lambda \leq n \\
O(n) & \text{if } \sqrt{A}/\lambda \geq n
\end{cases}
\]

where \(\lambda \) is the carrier wavelength.
Temporary conclusion

- when area is a scarce resource, i.e. when $\sqrt{A}/\lambda \leq \sqrt{n}$, multi-hop achieves the optimal aggregate throughput scaling $T(n) = \Theta(\sqrt{n})$
Temporary conclusion

- when area is a scarce resource, i.e. when $\sqrt{A/\lambda} \leq \sqrt{n}$, multi-hop achieves the optimal aggregate throughput scaling $T(n) = \Theta(\sqrt{n})$

- on the other hand, when $\sqrt{A/\lambda} \geq n$, hierarchical cooperation achieves the optimal aggregate throughput scaling $T(n) = \Theta(n)$
Temporary conclusion

- when area is a scarce resource, i.e. when $\sqrt{A}/\lambda \leq \sqrt{n}$, multi-hop achieves the optimal aggregate throughput scaling $T(n) = \Theta(\sqrt{n})$

- on the other hand, when $\sqrt{A}/\lambda \geq n$, hierarchical cooperation achieves the optimal aggregate throughput scaling $T(n) = \Theta(n)$

- can we do better than multi-hop in the intermediary regime?
Theorem

When $\sqrt{n} \leq \sqrt{A}/\lambda \leq n$ and $SNR = P/d^2 \geq 0$ dB, an aggregate throughput scaling arbitrarily close to

$$T(n) = \Theta(\sqrt{A}/\lambda)$$

is achievable via hierarchical cooperation (Özgür-L-Tse, ITA 2010).
Theorem

When $\sqrt{n} \leq \sqrt{A/\lambda} \leq n$ and $\text{SNR} = P/d^2 \geq 0$ dB, an aggregate throughput scaling arbitrarily close to

$$T(n) = \Theta(\sqrt{A/\lambda})$$

is achievable via hierarchical cooperation (Özgür-L-Tse, ITA 2010).

Remark:
A similar result has been obtained independently by Lee-Chung, ISIT 2010.
Proof idea: where does the spatial limitation kick in?
Proof idea: where does the spatial limitation kick in?

- the number of bits that can be transmitted simultaneously between two clusters of M nodes and area A is $O(\sqrt{A}/\lambda)$
Proof idea: where does the spatial limitation kick in?

- The number of bits that can be transmitted simultaneously between two clusters of M nodes and area A is $O(\sqrt{A}/\lambda)$.
- In the case where clusters are far apart from each other, the situation might even get worse!
Proof idea: where does the spatial limitation kick in?

- the number of bits that can be transmitted simultaneously between two clusters of M nodes and area A is $O(\sqrt{A}/\lambda)$
- in the case where clusters are far apart from each other, the situation might even get worse!
- what we show: if the distance D between the two clusters is of the order of \sqrt{A} or more, then $\Omega(A/\lambda D)$ bits can be transmitted simultaneously
Proof idea: where does the spatial limitation kick in?

- the number of bits that can be transmitted simultaneously between two clusters of M nodes and area A is $O(\sqrt{A}/\lambda)$
- in the case where clusters are far apart from each other, the situation might even get worse!
- what we show: if the distance D between the two clusters is of the order of \sqrt{A} or more, then $\Omega(A/\lambda D)$ bits can be transmitted simultaneously
- at the highest level of the hierarchical scheme, it turns out that $D \sim \sqrt{A}$, so $\Omega(\sqrt{A}/\lambda)$ bits can be transmitted simultaneously
Proof idea (cont’d)

- how to compensate for the lack of spatial degrees of freedom?
Proof idea (cont’d)

- how to compensate for the lack of spatial degrees of freedom?
- a simple solution again: reduce the number of nodes communicating simultaneously, so as to meet the spatial limitation
Proof idea (cont’d)

- how to compensate for the lack of spatial degrees of freedom?
- a simple solution again: **reduce the number of nodes communicating simultaneously**, so as to meet the spatial limitation
- !!! the area occupied by the nodes should be kept **fixed** !!!
Proof idea (cont’d)

- how to compensate for the lack of spatial degrees of freedom?
- a simple solution again: reduce the number of nodes communicating simultaneously, so as to meet the spatial limitation
- !!! the area occupied by the nodes should be kept fixed !!!
- this way, a throughput of order arbitrarily close to $\Theta(\sqrt{A}/\lambda)$ is achievable via hierarchical cooperation
Conclusion #3

If \(\sqrt{A/\lambda} \leq \sqrt{n} \), then multi-hop is optimal
if \(\sqrt{A/\lambda} \geq \sqrt{n} \), then hierarchical cooperation is optimal
(provided that \(SNR = P/d^2 \geq 0 \) dB in both cases)
Wireless network example: EPFL learning center
Wireless network example: EPFL learning center

- \(n \sim 1'000 \) students at peak hours
Wireless network example: EPFL learning center

- $n \sim 1'000$ students at peak hours
- $A = 200 \times 100 = 20'000$ square meters (discarding the holes!)
Wireless network example: EPFL learning center

- \(n \sim 1'000 \) students at peak hours
- \(A = 200 \times 100 = 20'000 \) square meters (discarding the holes!)
- carrier frequency = 3 GHz \(\Rightarrow \) carrier wavelength \(\lambda = 0.1 \) m
Wireless network example: EPFL learning center

- $n \sim 1'000$ students at peak hours
- $A = 200 \times 100 = 20'000$ square meters (discarding the holes!)
- Carrier frequency $= 3$ GHz \Rightarrow carrier wavelength $\lambda = 0.1$ m
- so $\sqrt{A}/\lambda \sim 1'400 \geq n$: no spatial limitation
Wireless network example: EPFL learning center

- $n \sim 1’000$ students at peak hours
- $A = 200 \times 100 = 20’000$ square meters (discarding the holes!)
- carrier frequency $= 3 \text{ GHz} \Rightarrow$ carrier wavelength $\lambda = 0.1 \text{ m}$
- so $\sqrt{A}/\lambda \sim 1’400 \geq n$: no spatial limitation
- and no power limitation either ($d \sim 4 \text{ m}, \text{ SNR} \gg 0 \text{ dB}$)
Open problem

What happens when both power and area are limiting factors?