Bayesian estimation of the climate sensitivity based on a simple climate model fitted to global temperature observations Magne Aldrin, Norwegian Computing Center and University of Oslo Cambridge workshop, December 2010 - Joint work with - * Marit Holden, Norwegian Computing Center - * Peter Guttorp, University of Washington and Norwegian Computing Center - * Terje Koren Berntsen, CICERO - * Gunnar Myhre, CICERO - * Ragnhild Bieltvedt Skeie, CICERO - * CICERO = Center for International Climate and Environmental Research in Oslo - Work in progress, preliminary results ## Climate sensitivity S #### Definition: Climate sensitivity = S = The temperature increase due to a doubling of CO_2 concentrations compared to pre-industrial time (1750) ## Radiative forcing - CO_2 is only one of several factors that affect the global temperature - Radiative forcing = The change in net irradiance into the earth relative to 1750 - Measured in Watts per square meter - The global temperature depends on the radiative forcing - The climate sensitivity measures the strength of this dependency ## Aim of study #### To estimate the climate sensitivity - by modelling the relationship between - * estimates of radiative forcing since 1750 and - * estimates of global temperature based on measurements since 1850 - using a climate model based on physical laws #### Climate model #### Could use - an Atmospheric Ocean General Circulation Model, but complex and very computer intensive - an approximation to an AOGCM, an emulator based on Gaussian processes - a simple climate model, our approach ## The "true" global state of the earth in year t - ullet TNH_t Temperature at the northern hemisphere - \bullet TSH_t Temperature at the southern hemisphere - OHC_t Ocean heat content ## Simple climate model - Deterministic computer model (Schlesinger et al., 1992) - based on - ★ energy balance - * upwelling diffusion ocean - where the earth is divided into - * atmosphere and ocean - * northern and southern hemisphere - with - * radiative forcing into the system - ★ energy mixing - * between the atmosphere and the ocean - * within the ocean ## Simple climate model cont. $$\mathbf{m}_t(\mathbf{x}_{1750:t}, S, \boldsymbol{\theta})$$ - Yearly time resolution - Output - * temperature northern hemisphere - * temperature southern hemisphere - * ocean heat content - Input - * $\mathbf{x}_{1750:t}$ yearly radiative forcing from 1750 until year t, separate for northern and southern hemisphere - \star S the climate sensitivity, the parameter of interest - \star θ 6-dimensional vector of other model parameters ## Response data - \bullet \mathbf{y}_t 7-dimensional vector with yearly observed temperatures and ocean heat content - Three pairs of series with temperature measurements for northern and southern hemisphere - * 1850-2007 (HadCRUT3, Brohan et al., 2006) - * 1880-2007 (GISS, Hansen et al. 2006) - * 1880-2007 (NCDC, Smith and Reynolds 2005) - One series with ocean heat content measurements - * 1955-2007 (Levitus et al. 2009) - These observations are not the truth, but are estimates of the underlying "true" global state of the earth - ullet s_t 7-dimensional vector of corresponding standard errors ### **Observations** ## Standard errors ## Radiative forcing - We will specify our best knowledge about historical radiative forcing as prior distributions of 9 independent components, based on temperature-independent estimates of each component, including uncertainties - * long-lived greenhouse gases - * direct aerosols - * indirect aerosols - * solar radiation - * volcanoes - * land use - * tropospheric ozone - * stratospheric ozone - \star stratospheric H_2O ## Priors of components of radiative forcing # Prior of total radiative forcing ## Model for "true" global state of the earth $$\mathbf{g}_t = (TNH_t, TSH_t, OHC_t)^T$$ Combined deterministic + stochastic model $$\mathbf{g}_t = \mathbf{m}_t(\mathbf{x}_{t:1750}, S, \boldsymbol{\theta}) + \mathbf{n}_t^m$$ • \mathbf{n}_t^m : model error, dimension 3 #### Model for observations $$\mathbf{y}_t = \mathbf{A}\mathbf{g}_t + \beta_0 + \mathbf{n}_t^o$$ - A: 7x3 matrix copying the northern and southern temperatures 3 times, to compare model with observations - β_0 : intercept, accounts for different reference periods, dimension 7 - \mathbf{n}_t^o : observational (measurement) error, dimension 7 - Can be difficult to separate model error and observational error, i.e. careful with too strict interpretation #### Model error We assume \mathbf{n}_t^m is VAR(1) (vector autoregressive process of order 1) $$\mathbf{n}_t^m = \mathbf{\Phi}^m \mathbf{n}_{t-1}^m + oldsymbol{arepsilon}_t^m$$ $oldsymbol{\Phi}^m$ is diagonal $$\boldsymbol{\varepsilon}_t^m \sim N(\mathbf{0}, \boldsymbol{\Sigma^m})$$ elements of $oldsymbol{arepsilon}_t^m$ are correlated ## Observational error ullet We assume \mathbf{n}_t^o is a scaled VAR(1) $$\mathbf{n}_t^o = diag(\mathbf{s}_t)\mathbf{n}_t^{o*}$$ where \mathbf{s}_t is the vector of known observational standard errors and \mathbf{n}_t^{o*} is VAR(1) ### **Estimation** - Bayesian approach (Kennedy and O'Hagan 2001), using MCMC - ullet Vague prior for S - ullet Informative priors for $\mathbf{x}_{t:1750}$ and $oldsymbol{ heta}$ - Vague priors for other parameters ## Observed and fitted response values # Posterior vs. prior of radiative forcing ## Model and observational errors - Positive autocorrelations ϕ 's between 0.5 and 0.7 - Positive correlations between temperature errors - Temperature errors and ocean heat content errors are uncorrelated ## Posterior of the climate sensitivity S #### **Re-estimation 1850-1990 + prediction 1991-2007** ## Posteriors for reduced data ## Posteriors for only temperature or OHC ## Posteriors including cloud lifetime effect - Aerosols change the lifetime of clouds - Cloud lifetime is *not* included a radiative forcing by IPCC (2007) - But plays a similar role in our approach ### Further work - Include the cloud lifetime effect with uncertainty - Update priors of forcing, more precise estimates of historical forcing will be available soon - Include data from 2008 and 2009 # Thank you for your attention! ## Other approaches i) Tommassini, Reichert, Kunsch, Buser, Knutti and Borsuk (2009) in Applied Statistics $$\mathbf{y}_t = \mathbf{m}_t(\mathbf{x}_{t:1750}, S, \boldsymbol{\theta}) + \mathbf{n}_t^o$$ - ullet Similar model \mathbf{m}_t - Only one temperature series - ullet No autocorrelation in observational error \mathbf{n}_t^o for temperature - No intercept - No model error term, all model error due to error in forcing - No informative prior for forcing $$x_t = \mu_t + \phi_t = \text{mean} + \text{random}$$ ## Other approaches ii) #### Sanso and Forest (2009) in Applied Statistics - Medium complex climate model computer intensive - Emulator - Response is aggregated temperature data ``` * mean(1946-1955) - mean(1905-1995), mean(1956-1965) - mean(1905-1995), mean(1966-1975) - mean(1905-1995), mean(1976-1985) - mean(1905-1995), mean(1986-1995) - mean(1905-1995) ``` - * Earth divided into four zonal bands - * 20 dimensional vector # Other approaches iii) Gregory, Raper, Stott and Rayner (2002) in Journal of Climate $$S = 3.71 \cdot \Delta T / (\Delta RF - \Delta OHC)$$ - ullet $\Delta T=$ mean temp 1957-1994 mean temp 1861-1900 - \bullet $\Delta RF = \text{mean RF } 1957-1994 \text{mean RF } 1861-1900$ - $\Delta OHC = \text{mean OHC } 1957-1994 \text{mean OHC } 1861-1900$