

Bayesian estimation of the climate sensitivity based on a simple climate model fitted to global temperature observations

Magne Aldrin, Norwegian Computing Center and University of Oslo

Cambridge workshop, December 2010

- Joint work with
 - * Marit Holden, Norwegian Computing Center
 - * Peter Guttorp, University of Washington and Norwegian Computing Center
 - * Terje Koren Berntsen, CICERO
 - * Gunnar Myhre, CICERO
 - * Ragnhild Bieltvedt Skeie, CICERO
 - * CICERO = Center for International Climate and Environmental Research in Oslo
- Work in progress, preliminary results

Climate sensitivity S

Definition:

Climate sensitivity = S

= The temperature increase due to a doubling

of CO_2 concentrations compared to pre-industrial time (1750)

Radiative forcing

- CO_2 is only one of several factors that affect the global temperature
- Radiative forcing = The change in net irradiance into the earth relative to 1750
- Measured in Watts per square meter
- The global temperature depends on the radiative forcing
- The climate sensitivity measures the strength of this dependency

Aim of study

To estimate the climate sensitivity

- by modelling the relationship between
 - * estimates of radiative forcing since 1750 and
 - * estimates of global temperature based on measurements since 1850
- using a climate model based on physical laws

Climate model

Could use

- an Atmospheric Ocean General Circulation Model, but complex and very computer intensive
- an approximation to an AOGCM,
 an emulator based on Gaussian processes
- a simple climate model, our approach

The "true" global state of the earth in year t

- ullet TNH_t Temperature at the northern hemisphere
- \bullet TSH_t Temperature at the southern hemisphere
- OHC_t Ocean heat content

Simple climate model

- Deterministic computer model (Schlesinger et al., 1992)
- based on
 - ★ energy balance
 - * upwelling diffusion ocean
- where the earth is divided into
 - * atmosphere and ocean
 - * northern and southern hemisphere
- with
 - * radiative forcing into the system
 - ★ energy mixing
 - * between the atmosphere and the ocean
 - * within the ocean

Simple climate model cont.

$$\mathbf{m}_t(\mathbf{x}_{1750:t}, S, \boldsymbol{\theta})$$

- Yearly time resolution
- Output
 - * temperature northern hemisphere
 - * temperature southern hemisphere
 - * ocean heat content
- Input
 - * $\mathbf{x}_{1750:t}$ yearly radiative forcing from 1750 until year t, separate for northern and southern hemisphere
 - \star S the climate sensitivity, the parameter of interest
 - \star θ 6-dimensional vector of other model parameters

Response data

- \bullet \mathbf{y}_t 7-dimensional vector with yearly observed temperatures and ocean heat content
- Three pairs of series with temperature measurements for northern and southern hemisphere
 - * 1850-2007 (HadCRUT3, Brohan et al., 2006)
 - * 1880-2007 (GISS, Hansen et al. 2006)
 - * 1880-2007 (NCDC, Smith and Reynolds 2005)
- One series with ocean heat content measurements
 - * 1955-2007 (Levitus et al. 2009)
- These observations are not the truth, but are estimates of the underlying "true" global state of the earth
- ullet s_t 7-dimensional vector of corresponding standard errors

Observations

Standard errors

Radiative forcing

- We will specify our best knowledge about historical radiative forcing as prior distributions of 9 independent components, based on temperature-independent estimates of each component, including uncertainties
 - * long-lived greenhouse gases
 - * direct aerosols
 - * indirect aerosols
 - * solar radiation
 - * volcanoes
 - * land use
 - * tropospheric ozone
 - * stratospheric ozone
 - \star stratospheric H_2O

Priors of components of radiative forcing

Prior of total radiative forcing

Model for "true" global state of the earth

$$\mathbf{g}_t = (TNH_t, TSH_t, OHC_t)^T$$

Combined deterministic + stochastic model

$$\mathbf{g}_t = \mathbf{m}_t(\mathbf{x}_{t:1750}, S, \boldsymbol{\theta}) + \mathbf{n}_t^m$$

• \mathbf{n}_t^m : model error, dimension 3

Model for observations

$$\mathbf{y}_t = \mathbf{A}\mathbf{g}_t + \beta_0 + \mathbf{n}_t^o$$

- A: 7x3 matrix copying the northern and southern temperatures 3 times, to compare model with observations
- β_0 : intercept, accounts for different reference periods, dimension 7
- \mathbf{n}_t^o : observational (measurement) error, dimension 7
- Can be difficult to separate model error and observational error,
 i.e. careful with too strict interpretation

Model error

We assume \mathbf{n}_t^m is VAR(1) (vector autoregressive process of order 1)

$$\mathbf{n}_t^m = \mathbf{\Phi}^m \mathbf{n}_{t-1}^m + oldsymbol{arepsilon}_t^m$$

 $oldsymbol{\Phi}^m$ is diagonal

$$\boldsymbol{\varepsilon}_t^m \sim N(\mathbf{0}, \boldsymbol{\Sigma^m})$$

elements of $oldsymbol{arepsilon}_t^m$ are correlated

Observational error

ullet We assume \mathbf{n}_t^o is a scaled VAR(1)

$$\mathbf{n}_t^o = diag(\mathbf{s}_t)\mathbf{n}_t^{o*}$$

where \mathbf{s}_t is the vector of known observational standard errors and \mathbf{n}_t^{o*} is VAR(1)

Estimation

- Bayesian approach (Kennedy and O'Hagan 2001), using MCMC
- ullet Vague prior for S
- ullet Informative priors for $\mathbf{x}_{t:1750}$ and $oldsymbol{ heta}$
- Vague priors for other parameters

Observed and fitted response values

Posterior vs. prior of radiative forcing

Model and observational errors

- Positive autocorrelations ϕ 's between 0.5 and 0.7
- Positive correlations between temperature errors
- Temperature errors and ocean heat content errors are uncorrelated

Posterior of the climate sensitivity S

Re-estimation 1850-1990 + prediction 1991-2007

Posteriors for reduced data

Posteriors for only temperature or OHC

Posteriors including cloud lifetime effect

- Aerosols change the lifetime of clouds
- Cloud lifetime is *not* included a radiative forcing by IPCC (2007)
- But plays a similar role in our approach

Further work

- Include the cloud lifetime effect with uncertainty
- Update priors of forcing,
 more precise estimates of historical forcing will be available soon
- Include data from 2008 and 2009

Thank you for your attention!

Other approaches i)

Tommassini, Reichert, Kunsch, Buser, Knutti and Borsuk (2009) in Applied Statistics

$$\mathbf{y}_t = \mathbf{m}_t(\mathbf{x}_{t:1750}, S, \boldsymbol{\theta}) + \mathbf{n}_t^o$$

- ullet Similar model \mathbf{m}_t
- Only one temperature series
- ullet No autocorrelation in observational error \mathbf{n}_t^o for temperature
- No intercept
- No model error term, all model error due to error in forcing
- No informative prior for forcing

$$x_t = \mu_t + \phi_t = \text{mean} + \text{random}$$

Other approaches ii)

Sanso and Forest (2009) in Applied Statistics

- Medium complex climate model computer intensive
- Emulator
- Response is aggregated temperature data

```
* mean(1946-1955) - mean(1905-1995),
mean(1956-1965) - mean(1905-1995),
mean(1966-1975) - mean(1905-1995),
mean(1976-1985) - mean(1905-1995),
mean(1986-1995) - mean(1905-1995)
```

- * Earth divided into four zonal bands
- * 20 dimensional vector

Other approaches iii)

Gregory, Raper, Stott and Rayner (2002) in Journal of Climate

$$S = 3.71 \cdot \Delta T / (\Delta RF - \Delta OHC)$$

- ullet $\Delta T=$ mean temp 1957-1994 mean temp 1861-1900
- \bullet $\Delta RF = \text{mean RF } 1957-1994 \text{mean RF } 1861-1900$
- $\Delta OHC = \text{mean OHC } 1957-1994 \text{mean OHC } 1861-1900$

