The Complexity of the uSPR Distance

Maria Luisa Bonet Universtidad Politecnica de Catalunya Barcelona, Spain bonet@lsi.upc.edu

Published in IEEE/ACM TCBB 2010 Joint work with Katherine St. John

When are two trees similar?

Phylogenies for sunflowers. Bob Jansen (UT Austin).

Distances Between Trees

- Robinson-Foulds distance: # of branches that occur in only one tree.
- Calculate in O(n) time using Day's Algorithm (1985).
- Extends naturally to weighted trees.

TBR Distance

• Tree-Bisection-Reconnect (TBR) Move:

• The TBR distance between two trees is the minimal number of TBR moves needed to transform the first tree into the second tree.

TBR Distance

• Tree-Bisection-Reconnect (TBR):

• TBR is NP-hard. (Allen & Steel '01)

SPR Distance

• Subtree-prune-regraft (SPR):

- The SPR distance between two trees is the minimal number of SPR moves needed to transform the first tree into the second tree.
- $d_{TBR}(T_1, T_2) \le d_{SPR}(T_1, T_2)$

SPR Distance

• Subtree-prune-regraft (SPR):

- SPR for rooted trees is NP-hard. (Bordewich & Semple '05)
- Approximation algorithm for SPR on rooted trees (Bonet, St. John, Amenta, & Mahindru '05) (Borderwich, McCartin, Semple).

Reduction Rules: Subtree Rule

Applying Subtree Rule preserves TBR distance (Allen & Steel '01), SPR distance (Allen & Steel '01, Borderwich & Semple '04) and Hybrid number (Borderwich & Semple '07).

Reduction Rules: Chain Rule

Applying the chain Rule preserves TBR distance (Allen & Steel '01), rSPR distance (Borderwich & Semple '04) and Hybrid number (Borderwich & Semple '07).

\$100 Problem

Mike Steel posed the following questions:

Does shrinking common chains preserve SPR distance? Calculating SPR distance is fixed parameter tractable?

Calculating TBR (Allen & Steel '01), rSPR (Borderwich & Semple '04), or Hybrid Number (Borderwich & Semple '07) is fixed parameter tractable.

Lower Bounds for Subchain Reduction

Hickey et al. showed that:

- Calculating SPR distance is NP-hard.
- $d_{uSPR}(T_1^n, T_2^n) 2 \le d_{uSPR}(T_1^3, T_2^3).$
- We improve this to: $d_{uSPR}(T_1^n, T_2^n) 1 \le d_{uSPR}(T_1^3, T_2^3)$

SPR distance is FPT

We show that uSPR is fixed parameter tractable with respect to parameter k:

That is, for distance k, it can be decided in p(n)f(k) time that two trees are distance k,

- \bullet where p is a polynomial in n, the number of leaves in the tree, and
- f(k) does not depend on n.

Sketch: TBR distance is FPT

- Input: Pair of trees (T_1, T_2) and distance parameter k.
- Obtain (T'_1, T'_2) applying subtree and clain reduction. $d_{TBR}(T_1, T_2) = d_{TBR}(T'_1, T'_2)$ unknown for SPR
- $|T'_1| \leq c.d_{TBR}(T_1, T_2)$ (lemma in Allen-Steel 2001)
- if $|T'_1| > c.k$ then $d_{TBR}(T_1, T_2) > k$ and return "no".
- else check all posible k TBR-moves from T_1^\prime to T_2^\prime and return "yes" or "no".
- This can be done in time $O((|T_1'|^2)^k) = O((d \cdot k)^{2k})$ Total time is $O(k^{2k}p(n))$.

New Reduction Rule: I-Chain Rule

Applying the $c \cdot k$ -chain Rule preserves SPR distance.

Size of Reduced Trees

Lemma: Let T_1 and T_2 be X-trees with SPR distance k. Let T'_1 and T'_2 be the trees obtained from T_1 and T_2 applying subtree and $c \cdot k$ -chain Rule. Then, $|T'_1| \leq dk^2$.

Proof:

if $d_{SPR}(T_1, T_2) \leq k$ then $d_{TBR}(T_1, T_2) \leq k$. Show that if $d_{TBR}(T_1, T_2) \leq k$, then $|T'_1| \leq dk^2$ as in Allen-Steel 2001 but with c.k-chains instead of 3-chains.

Sketch: SPR distance is FPT

- Input: Pair of trees (T_1, T_2) and distance parameter k.
- Obtain (T'_1, T'_2) applying subtree and ck-clain reduction.
- If $d_{SPR}(T_1, T_2) \le k$, $|T'_1| \le d \cdot k^2$ and $d_{SPR}(T_1, T_2) = d_{SPR}(T'_1, T'_2)$
- if $|T'_1| > d \cdot k^2$ then $d_{SPR}(T_1, T_2) > k$ and return "no".
- else check all posible k SPR-moves from T_1^\prime to T_2^\prime and return "yes" or "no".
- This can be done in time $O((|T_1'|^2)^k) = O((d \cdot k^2)^{2k})$ Total time is $O(k^{4k}p(n))$.

Idea for Improving Lower Bound

 $d_{uSPR}(T_1^n, T_2^n) - 1 \le d_{uSPR}(T_1^3, T_2^3)$

- Idea inspired from Hickey *et al*: treat common chains as subtrees to get "-2" bound.
- Go carefully by cases on a minimal set of moves to improve the bound to "-1".

Idea for Improving Lower Bound

Let T_1 and T_2 X-trees with common chain $1 \cdots l$ and SPR dist k.

We show $d_{SPR}(T_1^3, T_2^3) \ge k - 1$ by cases.

Case sketch: the minimal number of moves breaks 2 or 3 pendant edges from the 3-chain.

