Compactified String/M-theory prediction of the Higgs boson mass and properties

Gordy Kane, University of Michigan
String Phenomenology 2012, Newton Institute

Program since 2006 with *Bobby Acharya*, Piyush Kumar, Ran Lu, Eric Kuflik, Konstantin Bobkov, Bob Zheng, Scott Watson, Jing Shao...

Recent Review "Constrained Compactified string/M-theories – Higgs bosons, LHC, and more particle physics predictions", Acharya, Kane, Kumar arXiv:1204.2795

Here focus on Higgs boson prediction. See Acharya talk on compactification and overview, Kumar on DM, Lu on LHC

Philosophy

Look for generic solutions of **compactified** string/M theory with TeV scale physics emerging, no cosmological or phenomenological problems, Higgs mechanism (Radiative Electroweak Symmetry Breaking), etc – find many

Calculate M_h/M_Z for those solutions

(At end comment on calculation of M_h , not ratio)

- Remarkably, compactified string/M-theory predicts (ahead of time Aug 2011) the Higgs boson mass (M_h/M_z → M_h ≈ 125 GeV) focus on M-theory, but most results more generic theory, not model

 ☐ Make some good assumptions not closely related to Higgs sector
 - Compactify M-theory on G₂ manifold in fluxless sector
 - Assume gauge group below compactification is MSSM -- can calculate for other gauge groups and find out if results change
 - \circ Assume Hubble parameter H at end of inflation larger than $M_{3/2}$
 - Assume supergravity field theory after compactification
 - \circ Assume top quark with yukawa coupling \sim 1 (true)
 - Include μ following Witten approach
 - o Expected Kahler potential, gauge kinetic function, ok
- ☐ No free parameters, all calculated in compactified string/M theory
 - o mild sensitivity to gravitino mass, $\delta M_{3/2}$ =50 TeV $\rightarrow \delta M_h \approx 1.5$ GeV
 - o mild sensitivity to $tan\beta$
 - \circ tan β and μ related by EWSB, sensitive to size of μ

Why is M_h light?

- M_{planck}, compactified M theory, orbifold and conical singularities → gauge and chiral matter → gaugino, meson condensates, F-terms, supersymmetry-breaking, moduli stabilization, deS vacuum
- Typical gauge groups ightharpoonup condensation \sim 10⁻⁴⁻⁵ M_{planck} , cubed in superpotential, so M_{3/2} \sim 50-100 TeV (top down)
- $M_{3/2}$ > smallest eigenvalue of moduli mass matrix \gtrsim 30 TeV, from BBN
- **Calculate** soft-breaking Lagrangian: scalars, trilinears, B \sim M $_{3/2}$
- Gaugino masses suppressed since meson F terms dominate but don't contribute to gaugino masses
- μ superpotential term zero from Witten discrete symmetry broken by moduli stabilization, so $\mu_{eff} \sim$ (moduli vev/M_{pl})M_{3/2} \lesssim few TeV
- At high scale all terms of Higgs sector soft terms $\sim {\rm M_{3/2}}$, no EWSB
- Then M²_{Hu} runs down, satisfies EWSB conditions (REWSB)

Derive generic relation between lightest moduli mass and gravitino mass – basically that the gravitino is not lighter than lightest moduli – assumes supersymmetry breaking is involved in stabilizing at least one moduli (which generically happens, could not show it wasn't)

[Denef and Douglas hep-th/0411183, Gomez-Reino and Scrucca hep-th/0602246, Acharya Kane Kuflik 1006.3272]

Moduli mix with scalar goldstino, which generically has gravitino mass

Consider moduli mass matrix (but don't need to calculate it) -- Sgoldstino 2x2 piece of moduli mass matrix has mass scale M_{3/2}

Can show for pos def mass matrix that smallest eigenvalue of full matrix is smaller than any eigenvalue of (diagonal) submatrices

$$M_{3/2} > M_{mod} \gtrsim 30 \text{ TeV from BBN}$$

Higgs sector

In supersymmetric theory two higgs doublets required for anomaly cancellation – by "Higgs mass" mean mass of lightest CP-even neutral scalar in Higgs sector

If Z boson gets mass from Higgs mechanism can show $M_h\lesssim 2M_Z$ if theory perturbative up to \sim unification scale, $M_h\lesssim 140$ GeV for MSSM

Precise value depends on all the soft-breaking parameters including B, $\boldsymbol{\mu}$

Why 125 GeV? – not simple, must do RGE running, relate terms, smallest eigenvalue of matrix

Higgs potential at any scale – calculated at compactification scale, no parameters, then do RGE running to other scales

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2 - (bH_u^0H_d^0 + \text{c.c.}) + \mathbf{D} \text{ terms}$$

$$ightarrow$$
 Higgs mass matrix $\left(egin{array}{ccc} m_{H_u}^2 + \mu^2 & -b \\ -b & m_{H_d}^2 + \mu^2 \end{array}
ight)$

Need negative eigenvalue for EWSB – **expect no EWSB at high scales** -- as M²_{Hu} runs down, get EWSB, Higgs vevs

 $tan\beta = v_u/v_d$ only meaningful after EWSB, doesn't exist at high scales – $v_u^2 + v_d^2 \sim M_W^2$, input W mass value

Running of M²_{Hu} in string/M theory [arXiv:1105.3765 Feldman, GK, Kuflik, Lu]

So stringy prediction is a decrease \sim 10-2 in $\rm M^2_{Hu}$ – if trilinears not large get order of magnitude less decrease in $\rm M^2_{Hu}$

Greatly reduces "little hierarchy problem"

THEORY AT HIGH SCALE, DETAILS OF COMPUTING M_H

- Write theory at scale $\sim 10^{16}$ GeV, fix soft-breaking Lagrangian parameters by theory no free parameters
- Run down, maintain REWSB
- $tan\beta$ calculable in principle but not yet accurately -- constrained since related to B, μ via supergravity and EWSB maintain B \approx 2M $_{3/2}$ so μ not in superpotential
- Use "match-and-run" and also SOFTSUSY and Spheno, compare match at $(M_{stop1}M_{stop2})^{1/2}$ two-loop RGEs expect public software to work since scalars not too large
- Main sources of imprecision for given $M_{3/2}$ are M_{top} (1 GeV uncertainly in M_{top} gives 0.8 GeV in M_h), α_{strong} , theoretical gluino mass (allow 600 GeV to 1.2 TeV), trilinear couplings (allow 0.8-1.5 M_0)

Basic argument:

- O **Assume** supergravity in field theory limit then scalars from soft breaking supersymmetry Lagrangian all have $M_{scalars} \sim M_{3/2}$
- \circ So squarks \gtrsim 30 TeV, not observable at LHC!
- Assume MSSM below compactification scale for initial calculation no free parameters, soft Lagrangian fully predicted
- Scalars include Higgs sector soft terms M²_{Hu}, M²_{Hd}
- Ask for solutions that have a higgs mechanism (higgs vevs nonzero)
 after RGE running, radiative EWSB find many -- don't care about
 others, not our world
- o 15 \gtrsim tan $\beta \gtrsim$ 5 from supergravity consistency, tan $\beta \approx$ 10
- $\circ~$ Then supersymmetric higgs sector a "decoupling" one, mass eigenstates H, A, H $^\pm$ also \gtrsim 30 TeV , h light, and can calculate M_h /M $_Z$
- o Predict $M_h = 126$ GeV for $\tan \beta \gtrsim 6$
- o Calculations predict h should behave like SM higgs deviations only from chargino loop for h $\rightarrow \gamma \gamma$, at most a few per cent

EWSB, μ , tan β , naturalness

Usual EWSB conditions ($tan\beta>1$) [ensure higgs potential minimum away from origin]:

$$M_Z^2 = -2\mu^2 + 2(M_{Hd}^2 - M_{Hu}^2 \tan^2\beta)/\tan^2\beta$$

 $2B\mu = \sin 2\beta (M_{Hu}^2 + M_{Hd}^2 + 2\mu^2)$

 M^2_{Hu} runs to be small, M^2_{Hd} and B don't run much, μ suppressed, $\sin 2\beta {\approx} 2/\tan \beta$, $B{\approx}~2M_{3/2}$

$$\rightarrow$$
 tan $\beta \approx M_{3/2}^2/B\mu \approx M_{3/2}^2/B\mu \rightarrow \mu tan\beta \approx M_{3/2}^2/2$
e.g. $M_{3/2} = 60$ TeV, $\mu = 3$ TeV, $tan\beta = 10$, some uncertainty so examine $5 \lesssim tan\beta \lesssim 15$

Including the μ parameter in string theory

- Normally μ and tan β treated as parameters, constrained to get EWSB
- Ultimately want to derive them from first principles
- If μ in W then it should be of order string scale
- Need symmetry to set μ=0
- Witten, hep-ph/0201018 introduced discrete symmetry for G₂ compactification, closely connected to doublet-triplet splitting problem, proton lifetime, R-parity
- Witten did not break discrete symmetry so µ≡0 when moduli are stabilized the effects generally not invariant so the symmetry is broken

Size of μ

- μ proportional to $M_{3/2}$ since $\mu \to 0$ if susy unbroken
- Also μ proportional to moduli vev since $\mu \rightarrow 0$ if moduli not stabilized
- Stabilization led to moduli vev/ $M_{pl} \lesssim 0.1$
- So finally expect $\mu \lesssim 0.1 \, \mathrm{M}_{3/2}$
- Significantly affects M_h, also direct detection

MSSM assumption

- Can find models extending MSSM that give M_h same value as MSSM
- Can find models generically in conflict with extending MSSM (may not conflict at specific points)

Implications

>String/M theory crucial for *deriving* results!

- -- Must have theory with **stabilized** *moduli* and supersymmetry **breaking** compactified string theories
- -- Must derive gravitino-moduli connection to get lower limit on gravitino mass
- -- Must derive soft terms, otherwise could choose anything e.g. large trilinears crucial, people in past guessed (wrong) string theory gave prediction
- -- Must have μ embedded in string theory
- -- Must exhibit string solutions with EWSB
- -- must have effectively no parameters
- > Surprisingly, little interest from string theorists

Compactified string/M theory

- Derive solution to large hierarchy problem
- Generic solutions with EWSB
- Gauginos suppressed dynamically, dominant F term does not contribute
- Trilinears $\approx M_{3/2}$
- Little hierarchy mostly solved
- Scalars $pprox M_{3/2}$, not so heavy pprox 50 TeV
- Gluino lifetime $\lesssim 10^{-19}$ sec, decay in beam pipe
- $M_h \approx 125 \text{ GeV}$

Split susy (etc) models

- Assume no solution to large hierarchy problem
- EWSB assumed, not derived
- Gauginos suppressed by assumed Rsymmetry, suppression arbitrary
- Trilinears suppressed
- No solution to little hierarchy
- Scalars assumed very heavy, whatever you want, e.g. 10¹⁰ GeV
- Long lived gluino, meters or more
- $M_h \neq 125 \text{ GeV}$

Naturalness? Fine-tuning? Little hierarchy?

 $\rm M_h \approx 125~GeV~needs~M_{stop} \sim 25~GeV-unnatural?$

Suppose string theory gives a successful description of our string vacuum – Can string theory be unnatural?

If calculated M_h directly instead of ratio to Z, would get larger number, e.g. $M_Z \approx a \text{ TeV}$

Interesting to think about how precisely Higgs vev is constrained in order to give our world

- Donoghue, Dutta, Ross, Tegmark 0903.1024 argued that the higgs vev can vary a factor of a few without any change in SM physics
- they only vary one thing at a time, typically the allowed range is larger if several constraints are considered

Talk of Piyush Kumar – 130 GeV monoenergetic gamma from DM annihilation, non-thermal cosmological history \rightarrow wino-like DM, LSP mass \approx 144 GeV

$$E_{\gamma} = m_{LSP} \left(1 - \frac{m_Z^2}{4 m_{LSP}^2} \right)$$

Talk of Ran Lu -- LHC

Gluino lifetime $\sim 10^{-19}$ sec, decays in beam pipe

Current limit for gluinos with enhanced 3rd family decays, heavy scalars, about 750 GeV from all published ATLAS, CMS data

LHC14,0901.3367; LHC7, 1106.1963

Realistic Branching Fraction

$$\begin{split} m_{3/2} = 50 \,\mathrm{TeV} & BR\left(\tilde{g} \to t \,\bar{t} \,\tilde{\chi}^0\right) \approx 0.15 \\ M_{\mathrm{gluino}} = 900 \,\mathrm{GeV} & BR\left(\tilde{g} \to t \,\bar{b} \,\tilde{\chi}^- + h.c.\right) \approx 0.28 \\ M_{\mathrm{LSP}} = 145 \,\mathrm{GeV} & BR\left(\tilde{g} \to b \,\bar{b} \,\tilde{\chi}^0\right) \approx 0.08 \end{split}$$

So **BR (third family)** \approx ½, BR (1st + 2nd families \approx ½), half of all gluino pairs have 4 b's

For wino-like LSP, chargino and LSP are nearly degenerate, so chargino \rightarrow LSP plus very soft π^+ \rightarrow **disappearing charginos** in \sim half of events

FIG. 1: Charged Winos resulting from gluino pair production, binned as a function of transverse distance traveled from the beam line. These results correspond to 10 fb⁻¹ of LHC-8 data ($\sigma_{\tilde{g}\tilde{g}} \sim 235$ fb), with $m_{\tilde{g}} = 750$ GeV, $m_{\tilde{W}} = 150$ GeV. For graphical purposes, charginos traveling a transverse distance < 30 cm are not shown.

Final remarks

- Finally data maybe now for both higgs, DM gluinos in 2012
- Higgs, DM data looks like data from compactified constrained string theory with stabilized moduli should look!
- M theory compactified on G₂ manifold looks like a good candidate for describing our string vacuum explains a number of phenomena and predicts some (assuming Higgs data, 130 GeV gamma real) moduli stabilized, TeV scale, GCU, weak CPV, strong CPV, baryogenesis, ratio of B/DM, string axions, no flavor problem -- Many features generic.