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limit of vanishing Þber volume

4D Lorentz invariance G4 must have one and only one leg along T2     

Fluxes: G4

7-brane ßux

bulk ßuxes

M/F IIBT

B

2

CY

S1
M × S1

T

7-brane
K¬ahler



✦  We want to study the aspect of quantization of ßuxes



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

Luckily:  c2 is always an even class for smooth elliptic CY4 A.Collinucci, R.S. `10

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

Luckily:  c2 is always an even class for smooth elliptic CY4 A.Collinucci, R.S. `10

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !

•  CY singularities:
(SU & Sp)

Half-quantization arises when the singular locus is non-spin
A.Collinucci, R.S. `12



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

Luckily:  c2 is always an even class for smooth elliptic CY4 A.Collinucci, R.S. `10

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !

Connection to the Freed-Witten anomaly of the corresponding D7-stack S

[F ] !
c1(S)
2

" H 2(S,Z) with F the gauge ßux along each Cartan

•  CY singularities:
(SU & Sp)

Half-quantization arises when the singular locus is non-spin
A.Collinucci, R.S. `12



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

✦  We want to Þnd a 
direct and explicit map:

detecting FW anomaly

C
(2) ∈ H2(S,Z)

Luckily:  c2 is always an even class for smooth elliptic CY4 A.Collinucci, R.S. `10

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !

Connection to the Freed-Witten anomaly of the corresponding D7-stack S

[F ] !
c1(S)
2

" H 2(S,Z) with F the gauge ßux along each Cartan

•  CY singularities:
(SU & Sp)

Half-quantization arises when the singular locus is non-spin
A.Collinucci, R.S. `12



✦  We want to study the aspect of quantization of ßuxes

The theory of M2 propagating in CY4 may suffer from a global anomaly E. Witten `96

shift in the quantization of G4 [G4] +
c2(CY4)

2
! H 4(CY4, Z)

detecting M2 anomaly

C(4) ! H4(CY 4,Z)Lift✦  We want to Þnd a 
direct and explicit map:

detecting FW anomaly

C
(2) ∈ H2(S,Z)

Luckily:  c2 is always an even class for smooth elliptic CY4 A.Collinucci, R.S. `10

•  Issue for smooth CY: has either two or no legs along the Þber!c2(CY 4)

4D Lorentz in  CY-compactiÞcations with odd c2 !

Connection to the Freed-Witten anomaly of the corresponding D7-stack S

[F ] !
c1(S)
2

" H 2(S,Z) with F the gauge ßux along each Cartan

•  CY singularities:
(SU & Sp)

Half-quantization arises when the singular locus is non-spin
A.Collinucci, R.S. `12



The SU(2N) case



The SU(2N) case

Resolved Þber over SU(4) locus AfÞne Dynkin diagram of SU(4)

(1, i, i + 1, ! 1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D " P D̂ +QD̃ (4.6)

a2k+2 , kN " P â2k+2 , kN +Q ã2k+2 , kN k = 1, 2 , (4.7)

and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 #$E(1)
2N−1 %E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.
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Figure 3: This shows the transition from the extended Dynkin diagram of SU(4) (left) to

the extended Dynkin diagram of SU(5) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. The fifth D-brane of the SU(5) stack is given by

the Whitney-type brane. The orange nodes are the fibers of the 4-cycles on which it is

possible to detect the Freed-Witten anomaly.
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C(4) complete-intersection is even

�
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possible to detect the Freed-Witten anomaly.
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W splits into the 5th brane of the stack and another non-spin surface
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Figure 4: This shows the transition from the extended Dynkin diagram ofSU(5) (left) to
the extended Dynkin diagram ofSO(10) (right) happening along the curve{ P = Q = 0}
due to the singularity enhancement. Nodes connected by arrows are identiÞed. The
orange nodes are the Þbers of the 4-cycles on which it is possible to detect the Freed-
Witten anomaly.

This argument suggests that we should constrain the complex structure of the blown-
up fourfold, which is given in eq. (A.4), in such a way that the curve{ P = Q = 0} ! B3

is automatically contained in both the D-brane stack and the orientifold plane. Therefore,
we impose the following conditions

D " P öD + Q ÷D

a1 " P öa1 + Q ÷a1 ,
(4.15)

since the polynomial deÞning the O7-plane is

O7 : h = a2
1 + 4a2,1D . (4.16)

Since the curve{ P = Q = 0} is a branch of the intersection between the non-abelian stack
and the O-plane, we experience on it the gauge symmetry enhancement fromSU(2N +1)
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(4.15)

since the polynomial defining the O7-plane is

O7 : h = a
2
1 + 4a2,1D . (4.16)

Since the curve {P = Q = 0} is a branch of the intersection between the non-abelian stack

and the O-plane, we experience on it the gauge symmetry enhancement from SU(2N+1)

22

AfÞne Dynkin diagram of SO(10)



The SU(2N+1) case

same strategy, but different ßuxless object needed!

Orientifold plane

The new nodes pop up along the
 Òantisymmetric-matterÓ curve  S ∩ O7 ⊂ CY3

W splits into the 5th brane of the stack and another non-spin surface

! "

! # ! $ ! %

## %%

! &

$$ &&''

Figure 4: This shows the transition from the extended Dynkin diagram ofSU(5) (left) to
the extended Dynkin diagram ofSO(10) (right) happening along the curve{ P = Q = 0}
due to the singularity enhancement. Nodes connected by arrows are identiÞed. The
orange nodes are the Þbers of the 4-cycles on which it is possible to detect the Freed-
Witten anomaly.

This argument suggests that we should constrain the complex structure of the blown-
up fourfold, which is given in eq. (A.4), in such a way that the curve{ P = Q = 0} ! B3

is automatically contained in both the D-brane stack and the orientifold plane. Therefore,
we impose the following conditions

D " P öD + Q ÷D

a1 " P öa1 + Q ÷a1 ,
(4.15)

since the polynomial deÞning the O7-plane is

O7 : h = a2
1 + 4a2,1D . (4.16)

Since the curve{ P = Q = 0} is a branch of the intersection between the non-abelian stack
and the O-plane, we experience on it the gauge symmetry enhancement fromSU(2N +1)

22

Again:Constrain CY4 complex structure such that S ∩ O7 is reducible

and choose C(2) to be one component

The new integral, holomorphic 4-cycles are
the orange nodes Þbered over C(2)

! "

! # ! $
%#& ! ' ! (

%#&

! (
%(&! $

%(&

! (
%$&

Figure 4: This shows the transition from the extended Dynkin diagram of SU(5) (left) to

the extended Dynkin diagram of SO(10) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. Nodes connected by arrows are identified. The

orange nodes are the fibers of the 4-cycles on which it is possible to detect the Freed-

Witten anomaly.

This argument suggests that we should constrain the complex structure of the blown-

up fourfold, which is given in eq. (A.4), in such a way that the curve {P = Q = 0} ⊂ B3

is automatically contained in both the D-brane stack and the orientifold plane. Therefore,

we impose the following conditions

D ≡ P D̂ +QD̃

a1 ≡ P â1 +Q ã1 ,
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Interpretation: C(4) lifts loops of closed, non-orientable strings intersecting S in C(2)

This procedure works also for the SU(2N) series and lends better itself to treating 
the ÒU(1)-restrictedÓ cases.
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maybe due to its ÒanomalousÓ enhancement on the O-plane

✦  SenÕs limit of SU(N) F-theory conÞgurations leads to conifold singularities in CY3

An appropriate treatment of them is crucial for topological matters

✦  The class of  G4 | M5  must be pure torsion

Analyzing this condition using M/F theory duality may be relevant for 
the physics of the corresponding type IIB instantons

✦  The outlined picture of the lift may be useful for several consistency checks

Make sure that the M2 anomaly leads to well-deÞned chiral indices


