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4D Lorentz invariance =ap G4 must haveone and only one leg along T
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Interpretation:C“ lifts loops of closed, non-orientable strings intersecting S¢h C

This procedure works also for the SU(2N) series and lends better itself to treating
the OU(1)-restrictedCases
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The SU(3) casdbehaves misteriously...
maybe due to its OanomalousO enhancement on the O-plane

The outlined picture of the lift may be useful for sevarahsistency checks
=) Make sure that the M2 anomaly leads to well-deboi@dal indices

SenOs limit of SU(N) F-theory conbgurations leadsrtiold singularitied CYs

=P An appropriate treatmenof them is crucial for topological matters

The class ofG4| ms must bepure torsion

== Analyzing this condition using M/F theory duality may be relevant for
the physics of the corresponding typi& instantons



