Ground state properties of graphene in Hartree-Fock theory

Mathieu LEWIN

Mathieu.Lewin@math.cnrs.fr

(CNRS & Université de Cergy-Pontoise)

joint work with C. Hainzl (Tuebingen, Germany) & C. Sparber (Chicago, USA)

Newton Institute, Cambridge, July 31, 2012
Graphene

- Spectrum of non interacting graphene:

Locally, same as 2D massless Dirac operator

\[v_F \sigma \cdot (-i \nabla) = v_F \sigma \cdot \rho = -iv_F (\sigma_1 \partial_{x_1} + \sigma_2 \partial_{x_2}) := v_F D^0 \]

on \(L^2(\mathbb{R}^2, \mathbb{C}^2) \), with \(\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \), \(v_F \) = effective velocity

The effect of long range interactions

- **Short range interactions**: no effect on shape of excitation spectrum [GM-10]

- **Long range (Coulomb) interactions**: renormalization group (perturbative) methods give effective operator \(v_{\text{eff}}(p) \sigma \cdot p \) with

Continuous graphene, instantaneous interactions	\(v_{\text{eff}}(p) \sim	p	\rightarrow 0 \log(\Lambda/	p) \)	[GGV-94,Mish-07]
Continuous graphene, retarded interactions	\(v_{\text{eff}}(p) - v_* \sim	p	\rightarrow 0	p	^\eta \)	[GMP-10]
with \(v_* < c \)						
Hubbard model, retarded interactions	\(v_{\text{eff}}(p) - c \sim	p	\rightarrow 0	p	^\eta \)	[GMP-12]

- It was also proposed that a gap should open (Peierls instability) through lattice deformations [FL-11,GMP-12]

Dirac cones reshaped by interaction effects in suspended graphene

D. C. Elias1, R. V. Gorbachev1, A. S. Mayorov1, S. V. Morozov2, A. A. Zhukov3, P. Blake3, L. A. Ponomarenko1, I. V. Grigorieva1, K. S. Novoselov1, F. Guinea4* and A. K. Geim1,3
Effective Hamiltonian

Most popular model: Dirac gas with instantaneous Coulomb interactions

\[H^V = -i v_F \int_{\mathbb{R}^2} \Psi^*(x) \sigma \cdot (\nabla \Psi)(x) \, dx + \int_{\mathbb{R}^2} V(x) \rho(x) \, dx \]

\[+ \frac{1}{2} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{\rho(x) \rho(y)}{|x - y|} \, dx \, dy \]

- \[\Psi^*(x) \sigma (y) \tau + \Psi(y) \tau \Psi^*(x) \sigma = 2 \delta(x - y) \delta_{\sigma \tau} \]

- \[\rho(x) = \frac{1}{2} \sum_{\sigma = 1}^{2} [\Psi^*(x) \sigma, \Psi(x) \sigma] \]

- \[e^2 / \kappa = \hbar = 1 \text{ where } \kappa = \text{dielectric constant of substrate} \]

Outline:

- (HF) ground state when \(V \equiv 0 \)
- (HF) perturbed ground state when \(V \neq 0 \) need to add an ultraviolet cut-off!

Hartree-Fock approximation

- Any state in fermionic Fock space has a density matrix

\[\gamma(x, y)_{\sigma, \tau} = \langle \Psi(x)_{\sigma}^* \Psi(y)_{\tau} \rangle \]

which is such that \(0 \leq \gamma \leq 1 \) on \(L^2(\mathbb{R}^2, \mathbb{C}^2) \) (Pauli principle)

- Conversely, to any \(0 \leq \gamma \leq 1 \), there exists a corresponding preferred state in Fock space, called Hartree-Fock or quasi-free. Its (formal) energy is

\[\mathcal{E}_{\text{HF}}^V(\gamma) = v_F \text{tr} \, D^0(\gamma - 1/2) + \int_{\mathbb{R}^2} \rho_{\gamma - 1/2}(x) \, V(x) \, dx \]

\[+ \frac{1}{2} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{\rho_{\gamma - 1/2}(x) \, \rho_{\gamma - 1/2}(y) - |(\gamma - 1/2)(x, y)|^2}{|x - y|} \, dx \, dy \]

- The energy diverges like the volume, even with a UV cut-off
- The (formal) minimizer for \(v_F = +\infty \) is the free Dirac/Fermi sea:

\[\gamma^0 = 1(D^0 \leq 0) \]

Mathieu LEWIN (CNRS / Cergy) Graphene in Hartree-Fock theory Newton Institute, 31/07/12 6 / 15
The energy of translation-invariant states for $V \equiv 0$

Let $\mathcal{H}_\Lambda := \{ f \in L^2(\mathbb{R}^2, \mathbb{C}^2) : \text{supp}(\widehat{f}) \subset B(0, \Lambda) \}$ [\Lambda \simeq 0.1 \ \AA^{-1} \text{ in graphene}]

- A translation-invariant HF state on \mathcal{H}_Λ has $\gamma = \gamma(p)$ and its density is constant:

$$
\rho_{\gamma_{-1/2}} = \frac{1}{(2\pi)^2} \int_{B(0,\Lambda)} \text{tr}_{\mathbb{C}^2} \left(\gamma(p) - \frac{1}{2} \right) \, dp
$$

Example: $\gamma = \gamma^0 = 1(D^0 \leq 0)$, then

$$
\gamma^0(p) - \frac{1}{2} = -\frac{\sigma \cdot p}{2|p|} \implies \rho_{\gamma^0_{-1/2}} \equiv 0
$$

- Using that $|x|^{-1} = |k|^{-1}$, one finds that the energy per unit volume of any translation-invariant HF state $\gamma = \gamma(p)$ with $\rho_{\gamma_{-1/2}} \equiv 0$ is

$$
\mathcal{T}(\gamma) = \frac{1}{(2\pi)^2} \left(v_F \int_{B(0,\Lambda)} \text{tr}_{\mathbb{C}^2} \left(\sigma \cdot p \gamma_{\text{ren}}(p) \right) \, dp - \frac{1}{2} \int_{\mathbb{R}^2} \frac{\gamma_{\text{ren}}(x)^2}{|x|} \, dx \right)
$$

with $\gamma_{\text{ren}} = \gamma - 1/2$
Mean-field operator of interacting Dirac sea

Proposition (The mean-field operator [HLS12])

For any $\Lambda, v_F > 0$, define the operator $D^0 = v_F D^0 - \gamma^0_{\text{ren}}(x - y) |x - y|^{-1}$ on \mathcal{F}_Λ. Then we have

$$D^0 = v_{\text{eff}}(p) \sigma \cdot p \quad \text{with} \quad v_{\text{eff}}(p) = v_F + g \left(\frac{\Lambda}{|p|} \right),$$

$$g(R) = \frac{1}{2\pi} \int_0^\pi \int_0^R \frac{\cos \theta}{\sqrt{r^2 - 2r \cos \theta + 1}} rdr d\theta.$$

The function g is increasing on $[1, \infty)$ and it is such that $g(1) \approx 0.1324$ and $g(r) \sim_{r \to \infty} \log(r)/4$. Since $g > 0$, we have

$$\gamma^0 = 1(D^0 \leq 0).$$

Idea of proof. In Fourier space, the second term is

$$- \frac{1}{2\pi} \int_{|k| \leq \Lambda} \frac{\gamma^0_{\text{ren}}(k)}{|p - k|} dk = \sigma \cdot \left(\frac{1}{4\pi} \int_{|k| \leq \Lambda} \frac{k}{|k| |p - k|} dk \middle|_{p g(|p|)} \right).$$

The Dirac sea is the absolute minimizer

\[h(\nu_F) := \sup_{\text{supp} \hat{\varphi} \subset B_1} \frac{\langle \varphi, |x|^{-1} \varphi \rangle}{\langle \varphi, |p|(\nu_F + g(|p|^{-1}))\varphi \rangle} \]
\[\leq \frac{1}{\nu_F + g(1)} \sup_{\varphi} \frac{\langle \varphi, |x|^{-1} \varphi \rangle}{\langle \varphi, |p|\varphi \rangle} = \frac{\Gamma(1/4)^2}{2(\nu_F + g(1))\Gamma(3/4)^2} \]

Corollary (The Dirac sea is the absolute minimizer [HLS-12])

If \(\nu_F > h^{-1}(2) \), e.g. \(\nu_F > 2.0560 \), then \(\gamma^0 \) is the unique global minimizer of \(\mathcal{I} \).

Rmk. In massive 3D case [LS-00, HLS-07], \(\gamma^0 \) depends on coupling constant

Proof. Compute with \(F(p) = \gamma(p) - \gamma^0(p) \)

\[\mathcal{I}(\gamma) - \mathcal{I}(\gamma^0) = \frac{1}{(2\pi)^2} \left(\int_{B(0,\Lambda)} \text{tr}_{C^2} \left(D^0(p) F(p) \right) dp - \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\tilde{F}(x)|^2}{|x|} dx \right) \]

Then \(\text{tr}_{C^2} \left(D^0(p) F(p) \right) \geq \text{tr}_{C^2} \left(|D^0(p)| F(p)^2 \right) \geq h(\nu_F)^{-1} \int_{\mathbb{R}^2} |\tilde{F}(x)|^2 |x|^{-1} dx \)

Now we assume $V \neq 0$

Theorem (Locally perturbed ground state [HLS-12])

Assume $\Lambda > 0$ and $v_F > 2.0560$. For any external field $V = \nu \ast |x|^{-1}$ with $\int_{\mathbb{R}^2} |\hat{\nu}(k)|^2 |k|^{-1} \, dk < \infty$, there exists a ground state, that is, a state γ which minimizes the relative energy

$$
\gamma \mapsto "E^{V}_{HF}(\gamma) - E^{0}_{HF}(\gamma^0)"
$$

It solves the self-consistent equation

$$
\gamma = 1 \left(v_F \sigma \cdot (-i \nabla) + V + \rho_{\gamma-1/2} * \frac{1}{|x|} - \frac{(\gamma - 1/2)(x, y)}{|x - y|} \leq 0 \right).
$$

on \mathcal{H}_{Λ} and it is such that

$$
\text{tr} \left| \mathcal{D}^0 \right| (\gamma - \gamma^0)^2 < \infty, \quad \rho_{\gamma-1/2} \in L^\infty(\mathbb{R}^2), \quad \int_{\mathbb{R}^2} \frac{|\hat{\rho}_{\gamma-1/2}(k)|^2}{|k|} \, dk < \infty.
$$

The unique minimizer is γ^0 if $V \equiv 0$.

Rmk. We do not know if $\gamma - \gamma^0$ is compact! The state γ could live in a non-equivalent Fock representation.
From the self-consistent equation we can formally compute the linear response.

We write

$$\gamma - \gamma^0 = -\frac{1}{2\pi} \int_{-\infty}^{\infty} d\eta \left(\frac{1}{D^0 + \cdots + i\eta} - \frac{1}{D^0 + i\eta} \right)$$

$$\implies \hat{\rho}_{\gamma-\gamma^0}(k) = \hat{\rho}_{\gamma-1/2}(k) = -\frac{B(k)}{1 + B(k)} \hat{\nu}(k) + \cdots$$

for some $B(k) \sim \frac{\pi}{4 \log (\frac{\Lambda}{|k|})}$. One gets the universal behavior:

$$\hat{\rho}_{\gamma-1/2}(k) \big|_{|k| \to 0} \sim -\frac{\pi}{4 \log (\frac{\Lambda}{|k|})} \hat{\nu}(k)$$

No long-range screening, but very long range oscillations. Charge in a ball B_R:

$$\int_{|x| \leq R} \rho_{\gamma-1/2}(x) \, dx \bigg|_{R \to \infty} \sim -\frac{\pi}{4 \log R} \int_{\mathbb{R}^2} \nu$$
Sketch of proof of Theorem 2

Following [HLS-05], we show that the relative energy is \(\text{wlsc} \), where

\[
\mathcal{E}^V_{\text{HF}}(\gamma) - \mathcal{E}^0_{\text{HF}}(\gamma^0) = \text{tr} D^0 Q - \frac{1}{2} \int \int_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{|Q(x, y)|^2}{|x - y|^2} - D(\nu, \rho_Q) + \frac{1}{2} D(\rho_Q, \rho_Q)
\]

and \(Q = \gamma - \gamma^0 \).

Since

\[
\text{tr} D^0 Q = \text{tr} |D^0| (Q^{++} - Q^{--}) \geq \text{tr} |D^0| Q^2,
\]

where \(Q^{--} := \gamma^0 Q \gamma^0 \) and so on, the natural topology for \(Q \) is \(|D^0|^{1/2} Q^{\pm \pm} |D^0|^{1/2} \in \mathcal{G}_1 \) and \(|D^0| Q \in \mathcal{G}_2 \). This controls \(D(\rho_Q, \rho_Q) \).

We write

\[
\text{tr} |D^0| (Q^{++} - Q^{--}) = \text{tr} \left(|D^0| - (v_F + g(1)) |p| \right) (Q^{++} - Q^{--})
\]

\[\geq 0\]

\(\text{wlsc} \)

\[+(v_F + g(1)) \text{ tr} |p| (Q^{++} - Q^{--})\]

Sketch of proof of Theorem 2

Lemma (Weak lower semi-continuity)

\[\text{If } Q_n \rightharpoonup Q \text{ in the sense that } |\mathcal{D}^0| Q_n \rightharpoonup |\mathcal{D}^0| Q \text{ weakly in } \mathfrak{S}_2 \text{ and } \begin{align*}
|\mathcal{D}^0|^{1/2} Q_n^{\pm \pm} |\mathcal{D}^0|^{1/2} & \rightharpoonup |\mathcal{D}^0|^{1/2} Q^{\pm \pm} |\mathcal{D}^0|^{1/2} \text{ weakly-}* \text{ in } \mathfrak{S}_1, \end{align*} \text{ then for } \nu_F > 2.0560 \]

\[\liminf_{n \to \infty} \left(\text{tr} |p| (Q_n^{++} - Q_n^{--}) - \frac{1}{2(v_F + g(1))} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} |Q_n(x, y)|^2 \frac{1}{|x - y|} \, dx \, dy \right) \geq \text{tr} |p| (Q^{++} - Q^{--}) - \frac{1}{2(v_F + g(1))} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{|Q(x, y)|^2}{|x - y|} \, dx \, dy, \]

Proof goes by localizing \(Q_n \) in and outside of a fixed ball, and then using the strong CV inside and Hardy’s inequality outside. Main difficulty: no mass!

Lemma (Localization [LL-10,HLS-12])

\[\text{Let } 0 \leq \gamma \leq 1 \text{ with } \text{tr} |p| \gamma < \infty. \text{ Then for a smooth partition of unity } \chi^2 + \eta^2 = 1, \]

\[\text{tr} |p| \gamma \geq \text{tr} |p| \chi \gamma \chi + \text{tr} |p| \eta \gamma \eta \]

\[-c (\text{tr} |p| \gamma)^{1/2} \left(||\nabla \chi||^2_{L^2} + ||\nabla \eta||^2_{L^2} \right)^{1/2} \left(||\nabla \chi||^2_{L^4} + ||\nabla \eta||^2_{L^4} \right)^{1/2}.\]

Conclusion & Perspectives

► Conclusion:
 - Identified the ground state of graphene in a non-perturbative regime
 - Found the expected logarithmic divergence of the effective Fermi velocity
 - Shown the existence of bound states in a local external electric field
 - Linear response suggests that there are very long range oscillations, but no screening

► Perspectives:
 - Better understanding of the best constant $h(v_F)$ in Hardy-like inequality
 - Conductivity
Thematic trimester from April 15 to July 12, 2013, organized by Maria J. Esteban & Mathieu Lewin

Conferences

April 22 - April 26, 2013
Variational and spectral methods in quantum field theory
Organized by Volker Bach, Maria J. Esteban, Mathieu Lewin & Eric Séré

June 17 - June 21, 2013
Mathematical properties of large quantum systems
Organized by Maria J. Esteban, Mathieu Lewin, Robert Seiringer & Jan Philip Solovej

One-day workshops

April 19, 2013
Numerical challenges in relativistic quantum mechanics
Organized by Werner Kohn & Eric Séré

April 29, 2013
Mathematical challenges in quantum electrodynamics
Organized by Jan Dereziński, Paul Motzko & Krzysztof Pilchucki

June 14, 2013
The mathematics of interacting quantum systems in a random environment
Organized by Eric Cancès & Frederic Klopp

June 24, 2013
Mathematical and numerical challenges in quantum chemistry
Organized by Claude Le Bree & Christian Locht

Summerschool at CIRM (Marseille)

September 1 - 7, 2013
Current topics in mathematical physics
Organized by Maria J. Esteban, Christian Hainzl, Mathieu Lewin & Robert Seiringer

Regular events

Lectures for master & PhD students
Weekly research seminar
Weekly young researchers seminar

Programme coordinated by the Centre Émile Borel

Free but mandatory registration on www.ihp.fr
Financial support available, deadline for application: Oct. 15, 2012

For more information, contact the CEB manager
Sylvie Lhermitte: vsmqm@ihp.fr