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Rama CONT: Contagion and 
systemic risk in financial networks 

Systemic Risk 
•  Systemic risk may be defined as the risk that a significant 

portion of the financial system fails to function properly. 
•  The monitoring and management of systemic risk has become 

a major issue for regulators and market participants since the 
2008 crisis. 

•  The financial crisis has simultaneously underlined 
· the importance of contagion effects and systemic risk 
· the lack of adequate indicators for monitoring systemic risk. 
· the lack of adequate data for computing such indicators 
Many initiatives under way: new regulations (Basel III), new 

financial architecture (derivatives clearinghouses), legislation 
on transparency in OTC markets, creation of Office of 
Financial Research (US), various Financial Stability Boards 

BUT: methodological shortcomings, open questions 
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Systemic Risk 
Various questions: 
Mechanisms which lead to systemic risk 
Metrics  for systemic risk  
Monitoring of systemic risk: data type/granularity ? 
Management and control of systemic risk by regulators 
Need for quantitative, operational answers  
Mathematical / Quantitative Modeling can and should 

play a more important role in the study of systemic 
risk and in the current regulatory debate. 
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The ‘microprudential’ approach to financial stability 
Traditional approach to risk management and bank regulation: 

focused on failure/non-failure (solvency, liquidity) of 
individual banks 

Focuses on balance sheet structure of individual banks 
Risk of each bank’s portfolio is measured using a statistical 

approach based on historical data: assumes that losses arises 
due to exogenous random fluctuations in risk factors (stock 
prices, exchange rates, interest rates, housing prices..) 

Main tool for stabilization of system: capital requirements 
Based on premise that ‘it is enough to supervise the stability of 

each bank to ensure stability of system’ 
Ignores links or interactions between market participants which 

can lead to market instabilities even when banks are ‘well 
capitalized’ (Hellwig 1995, 1998;  Rochet & Tirole 1996; 
Freixas, Parigi & Rochet 2000) 
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Systemic Risk 
Need to shift focus in risk measurement/ modeling of financial 

stability from institution-based viewpoint to a systemic 
viewpoint 

Requires design and monitoring of system-wide indicators of 
stability and volatility 

Regulatory recommendations and risk management recipes 
should be examined in the light of  impact on systemic risk 

Rules which improve the risk profile of an individual portfolio 
may simultaneously increase systemic risk if applied on a 
large scale 

Example: portfolio diversification (Stiglitz  2010; Cont & 
Wagalath 2011, 2012; Greenwald et al 2008) 
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Systemic Risk in banking systems: channels of contagion 

•  Why do many financial institutions simultaneously default or 
suffer large losses ? 

•  1. Correlation: large exposures to common risk factors can 
lead to large simultaneous losses across institutions 

•  2. Counterparty Risk/ Balance sheet contagion: the default of 
one institution may lead to writedowns of assets held by its 
counterparties which may result in their insolvency. 

•  3. Spirals of illiquidity: market moves and/or credit events 
may lead to margin calls which lead to default of institutions 
which lack sufficient short term funds.  

•  4. Procyclical feedback effects: fire sales of assets due to 
deleveraging can further depreciate asset prices and lead to 
losses in other portfolios, generating endogenous instability 
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Channels of contagion: underlying network structure 

•  Each of these mechanism may be viewed as a contagion 
process on some underlying “network”, but the relevant 
“network topologies’’ and data needed to track them are 
different in each case: 

•  1. Correlation: cross-sectional data on common exposures to 
risk factors/asset classes for tracking large-scale imbalances 

•  2. Balance sheet contagion: network of interbank exposures, 
cross-holdings and liabilities + capital  

•  3. Spirals of illiquidity: network of short-term liabilities 
(payables) and receivables + ‘liquidity reserves’  

•  4. Fire sales/ feedback effects: data on portfolio holdings of 
financial institutions across asset classes + capital  
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Counterparty networks: interbank exposures 

•  The relevant setting for studying 
balance sheet contagion (insolvency 
cascades) is a network – a weighted, 
directed graph- whose nodes are 
financial institutions and whose links 
represents interbank exposures : 

Eij = exposure of i to j 
 
= writedown in balance sheet of i 
when j defaults, taking into 
account liabilities+ cross-holdings. 
•  Data on interbank exposures reveal a 

complex, heterogeneous structure 
which is poorly represented by simple 
network models used in the theoretical 
literature. 

Brazilian Interbank network 
(Cont, Moussa, Santos 2010) 



Figure: Network structures of real-world banking systems. Austria:
scale-free structure (Boss et al2004), Switzerland: sparse and centralized
structure (Müller 2006).



Figure: Network structures of real-world banking systems. Hungary:
multiple money center structure (Lubloy et al 2006) Brazil: scale-free
structure (Cont, Bastos, Moussa 2010).



The Brazil financial system: a directed scale-free network

∙ Exposures are reportted daily to Brazilian central bank.

∙ Data set of all consolidated interbank exposures (incl. swaps)+

Tier I and Tier II capital (2007-08).

∙ ! ≃ 100 holdings/conglomerates, ≃ 1000 counterparty relations

∙ Average number of counterparties (degree)= 7

∙ Heterogeneity of connectivity: in-degree (number of debtors)

and out-degree (number of creditors) have heavy tailed

distributions

1

!
#{", indeg(") = $} ∼ %

$!!"

1

!
#{", outdeg(") = $} ∼ %

$!#$%

with exponents &"#, &$%& between 2 and 3.

∙ Heterogeneity of exposures: heavy tailed Pareto distribution

with exponent between 2 and 3.
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Figure 3: Brazilian financial network: distribution of in-degree.
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Figure 4: Brazilian financial network: stability of degree distribu-

tions across dates.
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Figure 6: Brazilian network: distribution of exposures in BRL.
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Some Questions 

•  How does the default of a bank affect its counterparties, 
counterparties of counterparties,… (domino effect)? 

•  Which are the banks whose defaults generates the 
largest systemic loss? : identification of SIFIs 

•  Can the default of one or few institutions generate a 
macro-cascade / large-scale instabiity of network? 

•  How do the answers to the above depend on network 
structure? Which features of network structure determine 
its stability/ resilience to contagion? 

Previous work: many simulation studies+ analytical results 
for average cascade size  on homogeneous networks 
(Watts (2002), Gai & Kapadia (2011),…) 
Here: analytical results on resilience and cascade size 
(not just average) for general, heterogeneous networks 



Measuring systemic risk: why exposures are
important inputs

Market-based indicators have been recently proposed for

quantifying

∙ contagion effects: CoVaR (quantile regression of past bank

portfolio losses, Adrian & Brunnenmeier 2009)

∙ the (global) level of systemic risk in the financial system (Lehar

2005, Bodie, Gray, Merton 2008, IMF 2009, Huang, Zhu &

Zhou 2010, Acharya et al 2010,..)

Useful for analyzing past/current economic data and should be

part of any risk dashboard/ systemic risk tool kit.

Value as forward-looking diagnosis tools? any predictive ability?

18



Also: market-implied measures capture market-perceived systemic

risk. Did market prices capture the systemic risk of AIG prior to

its collapse?

Network approaches are based on exposures which represent

potential future losses, which can give quite a different picture

from past losses.

Even if we believe the Efficient Market hypothesis, market

indicators need not reflect exposures, which are not public

information.

Regulators, on the other hand, have access to non-public

information on exposures and should use such information for

stress testing and for computing systemic risk indicators.
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Default contagion in a financial network 
Two different approaches 
1)  Equilibrium approach : clearing vector (Eisenberg & Noé 1998) 

 
Given a matrix of ‘liabilities’/exposures E and a vector of ‘capital buffers’ 
c, find a stream of cash flows which either clears liabilities or results in 
default. In case of default, with recovery proportional to liability. 

Equilibrium defined as a fixed point. 
‘Liabilities’/ exposures are realized as cash flows at equilibrium. 
Endogenous recovery rates. 
2)  Stress testing approach (cascade approach):  
 
Given a matrix of exposures E and a vector of ‘capital buffers’ c, investigate 
impact of the default of a given node i by studying the cascade of domino 
effects it generates through propagation of losses across counterparties. 
 
Not an equilibrium: models actual outcome of a default (stress test of network) 
Recovery rates are exogenous (typically, zero). 



Measuring the systemic impact of a default

Objective: quantify the losses generated across the network by the

initial default of a given financial institution.

Defaults can occur through

1. (correlated) market shocks to balance sheets

!! !→ max(!! + "!, 0)

2. counterparty risk: default of $ may lead to default of % if

!" < '"!

3. lack of liquidity: if margin calls/ derivative payouts (!" exceed

available liquidity )! +
∑

" (!"(!+ ", ') < 0

In cases 2 and 3 this can generate a ’domino effect’ and initiate a

cascade of defaults.
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Example

Contagion lasts 3 rounds.
Fundamental defaults: fi j c0(i) = 0g = fag:
Contagious defaults: fi j c0(i) > 0 & cT(i) = 0g = fb; c; dg:
Total number of defaults: = 4.
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Definition (Loss cascade)

Consider an initial configuration with capital levels (c(j), j 2 V ). We
define the sequence (ck(j), j 2 V )k�0

as

c

0

(j) = c(j) and ck+1

(j) = max(c
0

(j)�
X

{i,ck (i)=0}

(1� Ri )Eji , 0), (1)

where Ri is the recovery rate at the default of institution i .
(cn�1

(j), j 2 V ), where n = |V | is the number of nodes in the network,
then represents the remaining capital once all counterparty losses have
been accounted for. The set of insolvent institutions is then given by

D(c ,E ) = {j 2 V : cn�1

(j) = 0} (2)
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Default impact

Definition (Default Impact)

The Default Impact DI (i , c ,E ) of a financial institution i 2 V is defined
as the total loss in capital in the cascade triggered by the default of i :

DI (i , c ,E ) =
X

j2V

c

0

(j)� cfinal(j), (3)

where (cfinal(j), j 2 V )k�0

is the final level of capital at the end of the
cascade with initial condition c

0

(j) = c(j) for j 6= i and c

0

(i) = 0.

Default Impact does not include the loss of the institution triggering the
cascade, but focuses on the loss this initial default inflicts to the rest of
the network: it thus measures the loss due to contagion.
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Variants

If one adopts the point of view of deposit insurance, then the relevant
measure is the sum of deposits across defaulted institutions:

DI (i , c ,E ) =
X

j2D(c,E)

Deposits(j).

Alternatively one can focus on lending institutions (e.g. commercial
banks), whose failure can disrupt the real economy. Defining a set C of
such core institutions we can compute

DI (i , c ,E ) =
X

j2C
c

0

(j)� cfinal(j)
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Default impact in a macroeconomic stress 
scenarios: the Contagion index 
(Cont, Moussa, Santos 2010) 

•  Idea: measure the joint effect of economic shocks and 
contagion by measuring the Default Impact of a node in 
a macroeconomic stress scenario 

•  Apply a common shock Z (in % capital loss) to all 
balance sheets, where Z is a negative random variable 

•  “Stress scenario” = low values/quantiles of Z 
•  Compute Default Impact of node k in this scenario: 

 DI( k, c(1+Z) ,E) 
•  Average across stress scenarios: 

CI(k)=E[ DI( k, c(1+Z) ,E) | Z < zq] 
Forward-looking, based on exposures and stress scenarios 



Heterogeneous stress scenarios

Macroeconomic shocks a↵ect bank portfolios in a highly correlated way,
due to common exposures of these portfolios.
Moreover, in market stress scenarios fire sales may actually exacerbate
such correlations.
In many stress-testing exercises conducted by regulators, the shocks
applied to various portfolios are actually scaled version of the same
random variable i.e. perfectly correlated across portfolios.
A generalization is to consider co-monotonic shocks generated by a
common factor Z :

✏(i ,Z ) = c(i)fi (Z ) (4)

fi are strictly increasing with values in (�1, 0], representing % loss in
capital.
A macroeconomic stress scenario corresponds to low quantiles ↵ of Z :
P(Z < ↵) = q where q = 5% or 1% for example.
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The Contagion Index

Definition (Contagion Index)

The Contagion Index CI (i , c ,E ) (at confidence level q) of institution
i 2 V is defined as its expected Default Impact in a macroeconomic
stress scenario:

CI (i , c ,E ) = E [DI (i , c + ✏(Z ),E )|Z < ↵] (5)

where the vector ✏(Z ) of capital losses is defined by (??) and ↵ is the
q-quantile of the systematic risk factor Z : P(Z < ↵) = q.

Z represents the magnitude of the macroeconomic shock
In the examples given below, we choose for ↵ the 5% quantile of the
common factor Z .
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Contagion index: 
simulation-based computation 

•  Simulate independent values of Z  
•  Compute Default Impact of node k in each scenario as 

 DI( k, c+ ε(Z),E) 
•  Average across stress scenarios given by Z<α  

CI(k)=E[ DI( k, c+ε(Z),E)| Z<α] 
Forward-looking, based on exposures and stress scenarios 
Depends on: 
- network structure through DI 
- Joint distribution F of ε(Z)=(ε1(Z),ε2(Z),…εn(Z))  



Contagion index:  empirical results for the 
Brazilian banking system 



Contagion index:  empirical results for the 
Brazilian banking system 



Empirical results for the Brazilian banking system 



Role of capital ratios

Homogeneity: 8� > 0,DI (i ,�c ,�E ) = �DI (i , c ,E ).
Consequence : natural normalization is to express CI ,DI as % of
total capital

Monotonicity in capital ratio: Default Impact and Contagion index,
as % of initial capital, are (componentwise) increasing functions of
ratio of exposures to capital E (i , j)/c(i):

8i , j 2 V ,
E (i , j)

c(i)
>

E

0(i , j)

c

0(i)
) 8k 2 V ,

DI (k , c ,E )P
i c(i)

� DI (k , c 0,E 0)P
i c

0(i)

BUT: Default Impact and Contagion index are NOT monotone
functions of the (usual) capital ratios! One can have

8i 2 V ,

P
j E (i , j)

c(i)
>

P
j E

0(i , j)

c

0(i)
and

DI (k , c ,E )P
i c(i)

<
DI (k , c 0,E 0)P

i c
0(i)
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Capital-e�ciency of networks

The lack of monotonicity of the Contagion Index with respect to
total capital or capital ratios leads to the question: given a network
of exposures and capital allocation, is there a better scheme of
capital requirements/allocations which reduces systemic risk
(Contagion Indices) without increasing the total level of capital
requirements?

A capital allocation c in the network of exposures E is said to more
globally capital-e�cient than c

0 if

X

i

c

0(i) >
X

i

c(i) and 8k 2 V ,CI (k , c 0,E )  CI (k , c ,E )

Such examples exist! But they also arise in empirical data...
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Monitoring nodes or monitoring links? 
A new look at capital requirements 
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Current prudential regulation uses as main tool monitoring and lower bounds for 
capital ratios defined as  c(i)/A(i) 
where A(i)= sum of  exposures of  i+ other assets of  i= Σj Eij  +a(i) 
Typically a uniform lower bound is imposed on capital ratios for all institutions, 
regardless of  their size/ systemic risk. 
Capital ratios do not quantify the concentration of  exposures. 
On the other hand: 
Simulations show the crucial role of  contagious exposures (“weak links”) with  

    Eij > c(i)+�i(Z) 
In other fields (epidemiology, computer network security,..) immunization strategies 
focus on  
- Monitoring or immunizing the most ‘systemic’ nodes 
-strengthening weak links as opposed to uniform or random monitoring. 
This pleads for monitoring links representing large relative exposures relative to capital 
(large value of  Eij /c(i) ) 
In a heterogeneous network, this can make a big difference! 



Targeted capital requirements 
 

Rama CONT: Contagion and 
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Using the Brazilian network data, we compare the 5% Tail condition expectation of  
the cross sectional distribution of  the Contagion Index, in 3 cases: 



Comparison of various capital requirement policies: (a) minimum capital ratio 
for all institutions in the network, (b) minimum capital ratio only for the 5% 
most systemic institutions, (c) capital-to-exposure ratio for the 5% most 
systemic institutions. (Cont Moussa Santos 2010) 

Focusing on weak links: targeted capital requirements 



Role of macro-shocks and diversification

Stress scenarios triggered by large values of a risk factor Z :

✏(i ,Z ) = c(i)fi (Z ) (6)

fi (Z ) represents the exposure of bank i to this risk factor.

Monotonicity wrt macro-shocks: greater |fi | leads to greater values
of Contagion Index.

Contribution of macro shocks to CI (k , c ,E ) is limited to he set
{i , fi (Z ).fk(Z ) > 0}: tis set is smallest in totally segmented markets,
and its size increases with diversification.

Worst case: in a totally ’globalized’/ diversified market
{i , fi (Z ).fk(Z ) > 0} = V

Consequence: large-scale diversification increases exposure to
systemic risk!

Diversification reduces the ’volatility’/ marginal risk measure of bank
portfolios in non-stress scenarios but.. increases the probability of
joint losses in stress scenarios generated by the common risk
factor(s) so increases the possibility of contagion.
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Contagion in large counterparty networks: 
analytical results 

•  Amini, Cont, Minca (2010): mathematical analysis of the 
onset and magnitude of contagion in a large 
counterparty network (n->∞) 

•  Main point: contagion may become large-scale if 

 
where 
µ(j,k)= proportion of nodes with with j debtors, k creditors 
λ = average number of counterparties 
q(j,k)  : fraction of overexposed nodes with (j,k) links,  
= fraction of nodes with degree (j,k) such that at least ONE 
exposure exceeds capital 

µ( j,k) jk
λj,k

∑ q( j,k)>1



Analysis of cascades in large networks

We describe the topology of a large network by the joint

distribution !!(", $) of in/out degrees and assume that !! has a

limit ! when graph size increases in the following sense:

1. !!(", $) → !(", $) as % → ∞: the proportion of vertices of

in-degree " and out-degree $ tends to !(", $)).

2.
∑

",$ "!(", $) =
∑

",$ $!(", $) =: & ∈ (0,∞) (finite expectation

property);

3. &(%)/% → & as % → ∞ (averaging property).

4.
∑!

%=1((
+
!,%)

2 + ((−!,%)
2 = )(%) (second moment property).
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A random network model for asymptotics

To embed out networks in an ensemble of networks with increasing

size, we use the configuration model

Given a sequence of in/out degrees !+!,# and out-degrees !−!,# and

exposure matrices ("!
#$), we generate a random ensemble of

networks with the same degree sequence by randomly permuting

the exposures across links going out of each node

This construction generates random networks with the same degree

sequences and same distribution of exposures, which can be both

specified from data.
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Figure 14: Random configuration model: random matching of in-

coming half-edges with weighted out-going half-edges.
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Contagious links: ! → " is a contagious link if the default of !

generates the default of ".

For each node ! and permutation # ∈ Σ!+("), we define

Θ(!, #) := min{% ≥ 0, &" <
#∑

$=1

(%
",'($)}

Θ(!, #) = number of counterparty defaults which will generate the

default of ! if defaults happen in the order prescribed by # :

)%(", %, *) :=

#{(!, #) ∣ # ∈ Σ$︸︷︷︸
, +(%)+" = ", +(%)−" = %, Θ(!, #) = *}

,-%(", %)"!
.

,-%(", %)")%(", %, 1) is the total number of contagious links that

enter a node with degree (", %).

The value )%(", %, 1) gives the proportion of contagious links ending

in nodes with degree (", %).

58



Proposition 1 (Asymptotic fraction of defaults). Under the above

assumptions:

1. If !∗ = 1, i.e. if "(!) > ! for all ! ∈ [0, 1), then an initial

default of a finite subset leads to global cascade where

asymptotically all nodes default.

∣%(&, '!, (!)∣
)

"→ 1

2. If !∗ < 1 and furthermore !∗ is a stable fixed point of ", then

the asymptotic fraction of defaults

∣%(&, '!, (!)∣
)

"→
∑

#,%

+(,, -)
#∑

&=0

.(,, -, /)0(,, !∗, /).
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The relevance of asymptotics 

Rama CONT: Contagion and 
systemic risk in financial networks 



Resilience to contagion This leads to a condition on the network

which guarantees absence of contagion:

Proposition 2 (Resilience to contagion). Denote !(", $, 1) the

proportion of contagious links ending in nodes with degree (", $). If

∑

!,#

$
%(", $) "

&
!(", $, 1) < 1 (11)

then with probability → 1 as ( → ∞, the default of a finite set of

nodes cannot trigger the default of a positive fraction of the

financial network.
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Resilience condition:

∑

!,#

!
"(#, !) #

%
&(#, !, 1) < 1 (12)

This leads to a decentralized recipe for monitoring/regulating

systemic risk: monitoring the capital adequacy of each institution

with regard to its largest exposures.

This result also suggests that one need not monitor/know the

entire network of counterparty exposures but simply the skeleton/

subgraph of contagious links.

It also suggests that the regulator can efficiently contain contagion

by focusing on fragile nodes -especially those with high

connectivity- and their counterparties (e.g. by imposing higher

capital requirements on them to reduce &(#, !, 1)).
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A measure for the resilience of a financial network 
•  Stress scenario: apply a common macro-shock Z, measured in % 

loss in asset value, to all balance sheets in network 
•  The fraction q(j,k,Z) of overexposed nodes with (j,k) links is then 

an increasing function of Z 
•  Network remains resilient as long as  
 
DEFINITION: Network Resilience = maximal shock Z* network 
can bear while remaining  resilient to contagion  
Z* is solution of  
 
 
 
Given network data, Z* computed by solving single equation 
 

µ( j,k) jk
λj,k

∑ q( j,k,Z )<1

µ( j,k) jk
λj,k

∑ q( j,k,Z )<1



Simulation-free stress testing of banking systems 
•  These analytical results may be used for  stress-test the resilience 

of a banking system, without the need for large scale simulation. 
•  Stress scenario: apply a common macro-shock Z, measured in % 

loss in asset value, to all balance sheets in network 
•  Analytical result allow to compute fraction of defaults as 

function of Z 
•  Network remains resilient (no macro-cascade) as long as  
 
 
An abrupt transition from resilience to non-resilience occurs when  
shock amplitude reaches Z*: cascade size/ number of defaultsas 
function of initial shock Z is discontinuous at Z=Z* 

µ( j,k) jk
λj,k

∑ q( j,k,Z )<1⇔ Z < Z *



The relevance of asymptotics 

Rama CONT: Contagion and 
systemic risk in financial networks 
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Figure 15: Final fraction of defaults as a function of common shock to

balance sheets in a scale-free directed network with Pareto exposures
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Statistical risk models
Liquidation value vs ’market value’

Liquidation value
A risk model based on Liquidation value

Conclusions

Black Swans?

Feb Mar Apr May Jun Jul Aug Sep Oct Nov
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0.65
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S&P 500
Eurostoxx 50

Collapse of 
Lehman Brothers

Figure: EWMA average correlation among SPDRs and Eurostoxx 50

Rama CONT Taming the Black Swan

http://www3.imperial.ac.uk/people/r.cont


Correlations among US stock returns, 
2008 



Correlation between subprime ABX index returns and SP500 returns: 
negative before 2006, positive after 2007! 
Longstaff (2009): The subprime credit crisis and contagion in financial markets. 
 





Statistical risk models
Liquidation value vs ’market value’

Liquidation value
A risk model based on Liquidation value

Conclusions

The LTCM e↵ect
A di↵usion model for liquidation value
Endogenous risk

Deleveraging schedule
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−0.6

−0.4

−0.2
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Fund value

Portion of the fund
liquidated

Drop in fund value

Figure: As fund value drops, manager/investors exit their positions: this
is modeled by a ’liquidation schedule’ f (.): Xi (t) = ↵i f (V (t)/V (0))

Rama CONT Taming the Black Swan
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Statistical risk models
Liquidity and market impact

Fixed mix strategies
Distressed selling

Conclusions

Endogenous risk
Spillover e↵ects

Price impact of distressed selling

Distressed selling activity impacts prices: market impact on

asset i ’s return is equal to ↵i
�i
(f (

V ⇤
k+1

V0
)� f (Vk

V0
))

�i represent the depth of the market in asset i : a net demand
of �i

100 shares for security i moves i ’s price by one percent.

This impact is not ’random’: it happens precisely when the
fund has large losses.

How does the price impact of distressed selling translate into
volatility, correlation and portfolio risk ?

Rama CONT Channels of Contagion



Black Swans
A simple model for endogenous risk

Simulation example
Di↵usion limit and realized correlation
Endogenous risk and spillover e↵ects

Price dynamics

Sk ,Vk

tk

S

⇤
k+1,V

⇤
k+1 Sk+1,Vk+1

tk+1

exogenous

economic factors

distressed selling

short selling

Return of asset class k= sum of fundamental component + price
impact

S

i
k+1 � S

i
k

S

i
k

=
p
⌧⇠ik+1+

↵i

�i

 
f (

Vk

V0
+

nX

i=1

↵iS
i
k

V0

p
⌧⇠ik+1)� f (

Vk

V0
)

!

(1)

where Vk =
nX

i=1

↵iS
i
k is the fund value.

Rama CONT Modeling Black Swans









Statistical risk models
Liquidation value vs ’market value’

Liquidation value
A risk model based on Liquidation value

Conclusions

The LTCM e↵ect
A di↵usion model for liquidation value
Endogenous risk

Continuous-time limit: di↵usion model for liquidation value

Theorem

When deleveraging schedule is smooth f 2 C 3
b and risk factors

verify E(|✏i |4) < 1, the continuous-time limit of the price
dynamics is given by a di↵usion model Pt = (P1

t , ...P
n
t )

t where

dP i
t

P i
t

= µi (Pt)dt + (�(Pt)dWt)i 1  i  n

µi (Pt) =
↵i

2�i
f
00
(
Vt

V0
)
< ⇡t ,⌃⇡t >

V 2
0

;�i ,j(Pt) = Ai ,j+
↵i

�i
f
0
(
Vt

V0
)
(At⇡t)j
V0

⇡t = (↵1P
1
t , ...,↵nP

n
t )

t is the (dollar) allocation of the fund

Vt =
X

1in

↵iP
i
t is the value of the fund

A factor loadings on risk factors: AAt = ⌃
Rama CONT Taming the Black Swan
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Statistical risk models
Liquidation value vs ’market value’

Liquidation value
A risk model based on Liquidation value

Conclusions

The LTCM e↵ect
A di↵usion model for liquidation value
Endogenous risk

Realized covariance

Proposition

The realized covariance C i ,j
s between returns of i and j is given by

the sum of a fundamental covariance and a liquidity-dependent
excess covariance term

C i ,j
t = ⌃i ,j +

↵j

�j
f
0
(

Vt

V0
)

(⌃⇡t)i
V0

+

↵i

�i
f
0
(

Vt

V0
)

(⌃⇡t)j
V0

+

↵i↵j

�i�j
(f

0
)

2
(

Vs

V0
)

< ⇡s ,⌃⇡s >

V 2
0

where ⇡s = (↵1P
1
s , ...,↵nP

n
s )

t
are portfolio wieghts.

Realized covariance is scenario-dependent, liquidity-dependent and
depends on the ratio (Liquidation Size)/Market Depth.

Rama CONT Taming the Black Swan
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•  Network models provide useful framework for analyzing 
contagion of default via insolvency/ illiquidity 

•  Financial networks are highly heterogeneous 
(exposures,connectivity, size): simple, homogeneous  
networks may provide wrong insights on systemic risk. 

•  Pay attention to the risk measures, not just the model: due to 
strong heterogeneity, assessments of contagion risk based on 
cross-sectional averages do not reflect the contribution of 
contagion to systemic risk. 

•  Asymptotic analysis of large networks allows to derive  
rigorous, explicit mathematical results about the relation 
between network structure and resilience to contagion for 
networks with arbitrary topology, which explain results of 
large-scale simulations.  

•  Heterogeneity entails that targeted capital requirements –
focusing on the most systemic institutions - are more effective 
for reducing systemic risk. 

•  Disaggregating capital ratios: monitoring concentration of 
exposures (as % of capital) is more important than capital 
ratios based on total asset size.  
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