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Let (U ,S t
o , µo) be a dynamical system, with:

U a compact phase space, S t
o : U → U a one-parameter group of

diffeomorphisms, µo the invariant natural measure.

Assumption: the measure µo is absolutely continuous with respect
to the Lebesgue measure:

µo(dx) = ρo(x)dx .

Let us add, at t = 0, a small perturbation ft(x) = htX (x),
changing the dynamics into:

ẋt = F (xt)︸ ︷︷ ︸
reference
driving

+ ft(xt)︸ ︷︷ ︸
perturbation

.
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Following Ruelle, the response in a generic observable Q : U → R
may be hence written as:

Ruelle’s expansion

〈Q(t)〉h = 〈Q(t)〉o +
∞∑
n=1

〈δQ(t)〉hn ,

〈Q〉h denotes the average of Q wrt the perturbed density,
whereas 〈Q(t)〉o the average wrt the unperturbed density.

It holds:

〈δQ(t)〉hn =

∫ +∞

−∞
dsn...

∫ +∞

−∞
ds1G (n)(s1, ..., sn)ht−s1 ...ht−sn .
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The nth order Green function can be read off explicitly:

G (n)(s1, ..., sn) =

∫
dxρo(x)θ(s1)...θ(sn − sn−1)×

× LP(sn − sn−1)...LP(s2 − s1)LP(s1)Q(x) ,

with:

LΦ = X (x) · ∂
∂x

Φ

P(t)Φ = Φ ◦ S t
o

At the linear order:

〈δQ(t)〉h1 =

∫ +∞

0
G (t − s)hsds =

∫ t

0
R(t − s)hsds

where R(t) is the Response function and G (t) = θ(t)R(t).
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Thus, at the linear order, Ruelle’s expansion yields the
Fluctuation-Dissipation Theorem:

〈δQ(t)〉h1 =

∫ t

0
hsds

∫
ρo(x0)X (x0)

(
∂

∂x0
Q(xt−s)

)
dx0 =

=

∫ t

0
ds

∫
σs(xs)Q(xt)ρo(x0)dx0 = 〈S(ω)Q(xt)〉o ,

where we introduced the dissipative flux σs(xs):

σs(xs) = hsγ(xs)

with

γ(x) = − 1

ρo(x)

[
∂

∂x
· (X (x)ρo(x))

]
.
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S(ω) is the integral of σs over the path ω = (xs , s ∈ [0, t]).
For conservative perturbations, S(ω) corresponds to the
Total Thermodynamic Entropy produced along the path.

Response function

R(t − s) = 〈γ(xs)Q(xt)〉o

Two different contributions in σs(xs):

σs(xs) = − ∂

∂xs
· fs(xs)︸ ︷︷ ︸
σA

+ fs(xs) · ∂
∂xs

(− log ρo(xs))︸ ︷︷ ︸
σB

. (1.1)

σA is a dissipative contribution, triggered by nonconservative
perturbations.
σB is related to the work made by the perturbation (Kubo’s
theory).
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Short digression on Fluctuation Relations

Let the involution G be defined as:

d(Gx)

dt
= −ft(Gx) → DG · ft = −ft ◦ G

with G ◦ G = 1, and DG denoting the Jacobian matrix of G .

S(ω) is odd under time reversal: S(ω) = −S(Gω).

Fluctuation Relation for S(ω) (Evans & Morris, 1993):

Prob.
(
S(ω) ≈ S

)
Prob.

(
S(Gω) ≈ −S

) ≈ exp S

Quantifies second law.

Obtained from theory of chaotic dynamical systems.

Related to ergodic theory by Gallavotti and Cohen (1995) who
formulated the Chaotic Hypothesis.
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Let the reference microscopic dynamics be Hamiltonian and the
steady state be equipped with a density.

We add a small conservative perturbation, given by:

ft(x) = htX (x) = −htS
∂V

∂x

This corresponds to replacing the Hamiltonian H0(x) as:

H0(x)→ H0(x)− htV (x) .

By taking, for simplicity: ρo(x) = Z−1 exp (−βH0(x)),

a straightforward calculation then yields:

σA = 0

σs(xs) = σB(xs) = βhs
d
ds V (xs)
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〈δQ(t)〉h1 = β

∫
ρ(x0)dx0Q(xt)

∫ t

0
dsV̇ (xs)hs

= β

∫
ρ(x0)dx0Q(xt)

(V (xt)ht − V (x0)h0)−
∫ t

0
dsV (s)ḣs︸ ︷︷ ︸

Heat


Note that:

(V (xt)ht − V (x0)h0) is the extra change of energy in the
environment due to the perturbation.∫ t

0 dsV (s)ḣs is the work done by the perturbation.

LRT is therefore cast as an equilibrium correlation between the
observable and the Total Entropy produced along the path:

〈δQ(t)〉h1 = β 〈S(ω)Q(xt)〉o R(t − s) = β
d

ds
〈V (xs)Q(xt)〉o
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What happens when moving into Nonequilibrium?

Invariant measure µo is supported on a fractal attractor.

The standard FDT links the response to a perturbation to the
statistical properties of the unperturbed system.

Not true, in general, in dissipative systems: the perturbed initial
state and its time evolution may lie outside the support of µo .

Hence, their statistical properties cannot be expressed by µo ,
which attributes vanishing probability to such states.
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For axiom A systems, Ruelle showed that the effect of a
perturbation

ft = f
‖
t + f ⊥t

on the response of a generic (smooth enough) observable Q
attains the form:

〈δQ(t)〉h1 =

∫ t

0
R‖(t − τ)f ‖τ dτ +

∫ t

0
R⊥(t − τ)f ⊥τ (τ)dτ︸ ︷︷ ︸

extra
term

R‖ may be expressed in terms of a correlation function
evaluated with respect to the unperturbed dynamics.

R⊥ depends on the dynamics along the stable manifold, hence
it may not be determined by µo (and may also be quite
difficult to compute numerically!).
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Figure: Left panel : In Ruelle’s approach, the perturbation is expressed as
the sum of one component parallel to the unstable manifold and one
parallel to the stable manifold. Right panel : In our approach, the
reference frame is rotated so that the direction of the perturbation
coincides with one of the basis vectors.
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Impulsive initial perturbation: x0 → x0 + δx0.

Linear Response:〈
δx i (t)

〉δ
1

=

∫ ∫
x i
t [ρo(x0 − δx0)− ρo(x0)] W (x0, 0→ xt , t)dx0dxt

=

〈
x i (t)

(
−∂ log ρ(xs)

∂xs

)〉o

· δx0

Objection: the invariant measure µ of a dissipative system is
singular (typically supported on a fractal attractor).
Thus, for dissipative systems the statistical features of a
perturbation are not immediately related to the statistical
properties of the unperturbed system: the perturbed initial state
and its time evolution may lie outside the support of the invariant
measure. Hence their statistical properties cannot be expressed by
µ, which attributes vanishing probability to such states.
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Alternative route to compute the response:〈
δx i (t)

〉δ
1

=

∫
x i
t [ρ̃t(x i ; δx0)− ρ̃o(x i

t)]dx i
t

where ρ̃o(x i
t) and ρ̃t are the marginal probability distributions

defined by:

ρ̃o(x i
t) =

∫
ρo(xt)

∏
j 6=i

dx j
t , ρ̃t(x i

t ; δx0) =

∫
ρt(x0; δx0)

∏
j 6=i

dx j
t .

Main message: projected singular measures are expected to be
smooth, especially if the dimension of the projected space is
sensibly smaller than that of the original space. In this case, the
FDT can be extended to a considerable fraction of dissipative
deterministic systems of interest in Physics.
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Baker Map:
Let M = [0, 1]× [0, 1] be the phase space, and consider the
evolution equation

(
xn+1

yn+1

)
= M

(
xn
yn

)
=


(

xn/`
ryn

)
, for 0 ≤ xn < `;(

(xn − `)/r
r + `yn

)
, for ` ≤ xn ≤ 1.

.

The map M is hyperbolic and dissipative for ` 6= 1/2. It can also
be shown that this dynamical system is endowed with an invariant
measure µ which is smooth along the unstable manifold and
singular along the stable one. In particular, µ factorizes as
dµ(x) = dx × dλ(y).
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Consider an initial impulsive per-
turbation and rotate the vectors of
the basis so that the coordinate x
lies along the direction of the per-
turbation. The projections of µ
have a density along all directions
except the vertical one.

A small perturbation does not take the state outside the
corresponding projected support.
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The Baker map shows that the response to very carefully selected
perturbations, cannot be computed in general from solely the
invariant measure.
However, the factorization of µ makes the present case rather
peculiar. Indeed, for the overwhelming majority of dynamical
systems, it looks impossible to select directions such that the
projected measures preserve the same degree of singularity as the
full measures. This is a consequence of the fact that stable and
unstable manifolds have different orientations in different parts of
the phase space, provided they exist. Clearly, the higher the
dimensionality of the phase space and the larger the number of
projected out dimensions, the more difficult it is to preserve
singular characters.
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Henon map:(
xn+1

yn+1

)
= M

(
xn
yn

)
=

(
yn + 1− ax2

n

bxn

)
one the phase space M = [−3

2 ,
3
2 ]× [ 1

2 ,
1
2 ], where a = 1.4 and

b = 0.3 imply a chaotic dissipative dynamics, with a fractal
invariant measure µ, which is not the product of the marginal
measures obtained by projecting onto the horizontal and the
vertical directions. These marginals are indeed regular and would
yield a regular product.
As stable and unstable manifolds wind around, changing
orientation, in a very complicated fashion, it seems impossible,
here, to disentangle the contributions of one phase space direction
from the other.
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Because no direction appears to be priviledged in phase space, an
initial perturbation along one of the axis should not lead to any
singular perturbed projected measure, or irregular response
function.

Shannon Entropy:

Si = −
∑
q

ρ
(q)
i log(ρ

(q)
i )
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Detailed balance dynamics
Nonequilibrium steady states

The presence of noise allows one to characterize the steady state,
even in presence of dissipation, by regular probability densities.

On the other hand, the SRB measures constitute the zero noise
limit of stochastically perturbed dynamical systems.

Extension of Ruelle’s formalism to
dynamical systems subjected to
random perturbations.

We consider stochastic diffusions,
described by the overdamped
Langevin equations (inertial ef-
fects disregarded, forces propor-
tional to velocities rather than to
acceleration).
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Definition

Overdamped Langevin equation for the state x ∈ Rn

ẋt = χ · [F (xt) + ft(xt)] +∇ · D(xt) +
√

2D(xt) ξt

with ξt = standard white noise.

The force F triggers the reference, unperturbed, dynamics:

F = Fnc −∇U

Fnc is a nonconservative force, U is the energy of the system.

Path probability P(ω): paths starting from ρo and subjected
to perturbation ft .

Path probability Po(ω): paths starting from ρo and
undergoing the reference dynamics.

P(ω) = e−A(ω) Po(ω)
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The action A may be split as: A = (T − S)/2, with:

S(ω) = A(Gω)− A(ω), T (ω) = A(Gω) + A(ω)

General expression for A(ω) (Girsanov formula):

A(ω) =
β

2

∫ t

0
ds

[
fs · χF +∇ · (Dfs) +

1

2
fs · χfs

]
− β

2

∫ t

0
dxs ◦ fs

with:

S(ω) = β

∫ t

0
dxs ◦ fs︸ ︷︷ ︸

work done
by force

, T (ω) = T1 + T2

with

T1 = β

∫ t

0
ds [fs · χF +∇ · (Dfs)] T2 =

β

2

∫ t

0
ds(fs · χfs)
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If the observable Q is even under the time-reversal, the following
linear response holds:

〈δQ(t)〉h1 = 〈Q(xt)S(ω)〉o = −〈Q(x0)S(ω)〉o

= −
∫

dx0ρo(x0)Q(x0) 〈S(ω)〉ox0
.

which recovers the structure of the response formula obtained for
deterministic systems. 〈S〉ox0

denotes the conditional expectation of
the entropy flux S(ω) over [0, t] given that the path started from
the state x0. Its instantaneous flux is defined:

〈S〉ox0
= β

∫ t

0
〈w(xs)〉ox0

ds

where w(xs) denotes to the instantaneous (random) work made by
the perturbation ft .
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Let the reference dynamics be an equilibrium dynamics: Fnc = 0,
i.e. ρo(x) ∝ e−βU(x).

The quantity w(xs) pertaining to this stochastic dynamics can be
explicitly computed:

w(x) =
χ

β
∇ · f − χf · ∇U

From the knowledge of w(x), one readily obtains the FDT for the
stochastic process under consideration.

Alternatively, but equivalently, by computing σs(xs), one
immediately recovers the expression for 〈w(xs)〉ox0

.
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It is also instructive to consider the case of a (conservative)
perturbation changing the potential U into U − htV . For the case
under consideration, the general response formula holds:

R(t − s) =
β

2

d

ds
〈V (xs)Q(xt)〉o −

β

2
〈LV (xs)Q(xt)〉o

= −β 〈LV (xs)Q(xt)〉o

where L is the (backward) generator L of the process, defined as

L = −χ∇U · ∇+
χ

β
∇2 .

On the other hand, one also finds:

γ(x) = βχ∇U · ∇V − χ∇2V . (3.1)

which leads to the same FDT formula.
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Definition

Fokker Planck equation

∂ρt
∂t

(xt) = −∇ · [χ(F + ft)ρt(xt)−
χ

β
∇ρt(xt)]

If Fnc 6= 0 (e.g. friction) for the reference dynamics, the
time-reversibility is broken (no detailed balance dynamics).

The NESS is characterized by an invariant density ρo(x) (not
know, in general).

In the steady state, one can define the information potential Iρo as:

Iρo = −d log ρo
dx

=
β

χ
u − βF

where u ≡ jρo/ρo denotes a probability velocity.
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General response function for overdamped diffusions:

R(t − s) = χ

〈[
− d

dxs
· f (xs) + Iρo (xs) · f (xs)

]
Q(xt)

〉
If the perturbation has a gradient form f = ∇V , the Response
function attains the form:

R(t − s) = −β 〈(u(xs) · ∇V (xs)) Q(xt)〉︸ ︷︷ ︸
Nonequilibrium

correction

+β
d

ds
〈V (xs)Q(xt)〉︸ ︷︷ ︸
Equilibrium
Green−Kubo

(3.2)
The equilibrium Kubo formula is reconstructed for Fnc = 0
(i.e. u = 0) or when describing the response in a reference frame
moving with drift velocity u.
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Second order correction

Going to second order:

〈δQ〉h2(t) =

∫ ∞
0

ds1ht−s1

∫ ∞
s1

ds2ht−s2 ×

×
∫

dx0ρo(x0)
[
γ(2)(x0, xs2−s1) + χ(2)(x0, xs2−s1)

]
Q(xs2)

where the second order terms γ(2) and χ(2), are even the under
time-reversal, and defined as:

γ(2)(x0, xs) = γ(x0)γ(xs) χ(2)(x0, xs) = −X (xs)
∂γ(x0)

∂x0
L−1(s, x0)

γ(2) yields the leading non-vanishing correction to 〈σ〉.
χ(2) describes the coupling between the perturbation flow and
the gradient of the dissipative flux through the tangent linear
operator.
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Second order correction

From the perspective of the large deviation approach, the role of
time-symmetric quantities becomes also explicitly visible at the
second order, where one has:

〈δQ(t)〉h2 = −1

2
〈Q(xt)S(ω)T1(ω)〉o

featuring the combined contribution of both the (linear order)
time-symmetric and time-antisymmetric components of the action.
It is not straightforward to establish a neat correspondence
between our second order results and those pertaining to the large
dev. approach.
Nevertheless, it is worth shedding light on the deterministic
interpretation of the dynamical activity T , whose role in statistical
mechanics has been largely unnoticed so far.
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Response Theory formalism. A general framework was
originally developed by Ruelle for axiom A systems.

Deterministic systems. Equilibrium is well-known. In
Nonequilibrium, difficulties stem from the lack of smoothness
of the invariant measure.

Stochastic dynamics. Noise allows one to introduce densities
even in presence of dissipation. Our results allow to recover
response formulae obtained by means of Large Deviations
theory.

Second order. Novel structures arises, not well understood
yet. Some of them may be more concerned with kinetics than
they are embedded into classical thermodynamics.
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