Summer School on Water Waves Newton Institute August 2014

Modulation and water waves — Part 1

Thomas J. Bridges, University of Surrey
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Modulation of uniform flows and KdV

h Uy —>

Q = houp (mass flux)

iy
|

= gho+ 1u2 (total head, Bernoulli energy).

Modulate the uniform flow
u = uUp+eq(X,T,e), X=ex, T=ct(SWEs)
U = Up+e2q(X,T,e), X=ex, T==c3t(KdV).
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Modulation of uniform flows and KdV

h, u, —>
N \\N \\N \\N
Q = houg (mass flux)

R = ghy+ u2 (total head, Bernoulli energy).
The flow is critical when
0Q B
duy Rfixed
Computing,
Q| » fixed = Notlo = [S(H_ 3U5) -

Differentiate with respect to ug.
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Modulation of uniform flows and KdV
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Computing,
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. at the maximum mean?
R fixed
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What does second derivative %
0
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Modulation of uniform flows and KdV

h, Uy —>

A N\ \\
Modulate the uniform flow:
U=ug+e2q(X,T,e), X=ex, T=ct.
Claim: g satisfies the KdV equation with

2 3
8q 0°Q 8q+j/8q

0.
9T " 02 | niixegT0X T X5

2My—=

Modulation of the mass CLAW for the full water wave problem
Mt + Qx - O,

where M is M evaluated on the uniform flow.
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Symmetry, modulation, and KdV

e basic state: (hg, Up)
e conservation laws: Q, =0and R, =0

e symmetry of water wave problem: ¢ — ¢ + ~, forall v € R
e the uniform flow is a symmetry induced solution:

P(X, ¥, t) = UoX + oo

e if the system is generated by a Lagrangian then symmetry
implies the conservation law

e strategy: modulate basic state, use connection between
symmetry and CLAW to get modulation equation
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Symmetry, modulation, KdV

e Lagrangian [ [ [ Ldxdzdt (e.g. Luke’s Lagr)

e One-parameter symmetry group = CLAW A; + B, =0
e basic state: 2(0, k) with 6 = kx + 6

e modulate: Z(x,t) = Z(0 + e, k + £2q) + 3W(6, X, T)
e Evaluate CLAW on basic state: <7 (k) and #(k)

o If #'(k) = 0 (criticality) then KdV emerges

2.9 Qqr + Prkqqx + X Qxxx = 0.

e ¢ : Krein signature, sign of momentum flux, dispersion
relation, ....
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Planar homoclinic bifurcation

Consider a parameter-dependent planar Hamiltonian system

oH . OH

_.:7 = — .h H .
P=%q" 9= wit (9,p, )

Suppose there is a family of equilibria (go(«), po(«)).

Suppose further that at some value o = ag there is a
saddle-centre transition of eigenvalues.
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Planar homoclinic bifurcation

At the saddle-centre transition, there is a Jordan chain
associated with the zero eigenvalue

L&y =0 and L& =JdE.

The linear system can be transformed to (symplectic) Jordan
normal form

0 —1]1/q\ _[o 0] (g L .
[1 0] (5>t_ [O s} (5) , (8= 41is a symplectic sign).

(9, p) are the transformed (q, p).
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Planar homoclinic bifurcation — nonlinear theory

Introduce a nonlinear normal form transformation up to
quadratic order. Again calling the new coordinates q(t) and
p(t), they satisfy

_5t e /—%/{624_
E]t = Sﬁ 4.
where | = ¢(a — «p) is an unfolding parameter and
k= (&, D*H(qo, po)(§1,£1))

Nonlinear normal form found in textbooks ...

e ARNOLD ET AL, Dyn Sys Ill; MEYER & HALL, Ham Sys
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Planar homoclinic bifurcation and curvature

Generates the familiar homoclinic (fish) diagram.
_51‘ = /—%/{624_

N
V4

\

(A
NS

q

Claim: more to the story — the coefficient « is a curvature
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Normal form via modulation

The normal form can be interpreted as a modulation equation
and the coefficient kK emerges from the modulation

_5t e /_ %a”62_|_...

G o= spto

« is a function of a parameter c:
lift to (p, 9, @) space
How to choose the ¢?
C —_— %
oJe"
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Modulation and curvature

Claim: the family of equilibria satisfy

Hy,=0
H,=c

o

Saddle-centre at c = ¢y < o/(¢y) =0
Nonlinear coefficient x equals the curvature o/'(cp).
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Lift: equilibria  relative equilibria

—p=Hy
q = Hp ; standard lift
—a=0
addin 0 = H, (symplectic lift)
Symplectic lifted system has symmetry! ~— 60+~ VyeR.
The equilibrium becomes a RE, (t) = ct + ¢

RE satisfy
Hq:o, Hp:O7 Ha:C
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Normal form via modulation

Hamiltonian system on R*
JZ,=VH(2Z), ZecR*. (1)
One-parameter abelian symmetry group with RE:

Z(0,c) where 6=ct+6,.

Evaluate conserved quantity, a; = 0 on RE: a(c)
Modulate (ansatz)

Z(t) = Z(0 +e¢,c + £2q) + 2 W(B, T, ), )

where ¢(T,e)and T = et.
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Normal form via modulation

Substitute the ansatz
Z(t) = 2(0 + ¢, c+2q) +°W(0, T <), (3)
into JZ; = VH(Z), expand everything in powers of ¢

21q=¢r
@ £3: solvability for Wy requires o/(cy) = 0 for some ¢,
4

Q¢

@ ¢*: solve equation for W5
@ £5: solvability for Wj if and only if

o"(co)qqr — sqrrr =0.
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Normal form via modulation

Substitution of the ansatz, and equating terms up to ° to zero
gives
g=¢r and o"(Co)aqr — sqrrr,

or, integrating the second equation and calling the constant of
integration /,

-1 =0

—p = |—30"(co)q?
¢ = g

q = sp.

Now reduce back to the planar system, giving the modulation
characterisation of the planar normal form.
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Normal form via modulation

—p = - (c0)q?

q = sp
-1 =0
¢ = q

The first two components recover the normal form, with a new
interpretation of the coefficient of nonlinearity as a curvature.

Note that the spectrum of the linear system (the “dispersion
relation”) is not computed: the saddle-centre is predicted by
a/(cg) = 0.
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Summary: saddle-centre, lift, RE, curvature, ...

Saddle-centre to homoclinic bifurcation

@ Dynamical systems approach: compute eigenvalues,
identify saddle-centre transition, normal form
transformations, analyze normal form

@ Geometric approach: lift equilibria to RE, generates
function «(c), &/(c¢) = 0 then implies saddle-centre, o”(c)
gives coefficient of normal form, analyze normal form.

@ Concomitantly, can modulate a family of RE, and generate
conditions and normal form for homoclinic bifurcation

@ o”(co)qqr — sqrrr = 0 with T replaced by X is steady KdV
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KdV via RE and modulation

Where does the KdV equation come from?

Most widely used approach: the dispersion relation = KdV
equation
For some system of PDEs, suppose the dispersion relation to
leading order is

w=—Cok+ak>+---.
replace iw by 0; and ik by dx and add in nonlinearity

bn?
0 =nt + Conx + anxxx + by
bn2.

Symmetry argument leads to the middle choice. Now compute
coefficients. The most difficult calculation is the coefficient b of
the nonlinearity.

T.J. Bridges (Surrey) Modulation and water waves



Derivation of KdV for water waves

@ Assume shallow water: hy/L — 0. The limiting equation is
the SWEs.

@ “amplitude balances dispersion” — introduce an amplitude
parameter take amplitude and hy /L to zero in appropriate
ratio. Limiting equation is a two way Boussinesq SWE.

@ Now uni-directionalise: split the Boussinesq equation into a

left-running and right-running component. Result is a pair
of KdV equations. (hidden assumption of criticality)

— Shallow water is neither necessary nor sufficient for
emergence of the KdV equation —
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Emergence of KdV by modulating background state

@ New observation: KdV emerges due to modulation of the
background state

@ The resulting KdV equation takes a universal form

24" (k)qr + #"(k)qax + # qxxx =0

@ Coefficients — including nonlinearity — reduced to an
elementary calculation.

@ KdV arises due to a critical point of a family of RE —in the
classic case the RE is a uniform flow.
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The KdV equation in shallow water hydrodynamics

AN N

The KdV equation in shallow water is
247" (Uo)qr + %" (Uo)qax + # qxxx =0,

where, relative to a laboratory frame,

W(Uo)zhOZL(R—;US) and  o'(up) = .
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KdV in shallow water continued

Substituting

U Uy 1
_ZEOQT — SEOQQX + ghS'QXxx =0,

and computing 2 = h3 /3. Now let g = —ugh/hg, then

1 3 1
——hr 4+ ——hhy + —h3hxxx =
m T+2h0 x+6oxxx 0,
the familiar form of the KdV found in textbooks, noting that
Up = ++/ghg (since B'(up) = 0).

2.4,
6

H = Wik = AS =

0
3
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Dynamical systems interpretation of .7

Write the universal KdV as a first order system
—ahqr—px = 0
GdT —Px = M — 3PBkq
ox = q
Gx = sp s=-X,
Steady RE: ¢(X) = cX + ¢o. There are 4 classes depending on

the sign of s and k = Zy. et are the Krein signatures of the
“‘incoming” periodic solution.

B x>0 " k>0
\ '
h \ [
e+ :'/1 h N e=
t ; \
/) \\
et . .
n n

— ¢ t—— ¢
. N
. S
' - \
n, e+ e b
' '
f \

T.J. Bridges (Surrey) Modulation and water waves



Emergence of KdV based on modulation of RE

Consider a PDE with Lagrangian

2(2) = / / L(Z:, Z,, Z) dxdt,
with Euler-Lagrange equation
0 ()2 (L)~ %o,
ot \ 04 ox \ 0Z 0Z
Symmetry, Noether, CLAW, relative equilibrium
Z(x,t)=Z(6,k), 6=hkx+6,
associated with symmetry and a conservation law
A+ Bx=0.

Modulate: Z(x, t) = Z(6 + e, k + £2q) + 3 W(0, X, T, ¢)
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Modulate and expand in powers of ¢

Modulate the family of RE: Z(6, k)
Z(x,t) = Z(0 + exp, k + £2q) + 2 W(0, X, T ),
with (X, T,e), (X, T,e) and scaling

T=¢3t and X =ex.

With W = Wy + Wy + e2Wsp + - - -, the ¢” terms give

e q=1x
3.  equation for W; solvable iff %'(k) =0

g4 . gives equation for W ,
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Fifth order terms

and at ¢°,
LWs = (MZc+J¢) g7+ (I Zik+d(Ea)o — D> S(Z°)(Zk, &) 9ax+IEa G -

Solvability gives (after a few pages!)

24" (k)gr + A" (k)qax + A4 qxxx =0
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Symmetry and conservation laws

Lagrangian + symmetry + Noether’s Theorem = CLAW
Consider a classical finite-dimensional Hamiltonian system

JZ; =VH(2Z).
Suppose it has a one-parameter symmetry with action and
generator
d ~
Z —GyZ =2.
Gg and do G@ oo [

Then invariance of H: H(GyZ) = H(Z) gives A; = 0 with
AZ)=1W2p,2) = VAZ) =JZ.

Hence A R
e = (VA(Z),Zs) = 82y, Z¢) .
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Lagrangian — Hamiltonian — Multisymplectic

Start with a Lagrangian formulation

g(U)://L(U,, Uy, U) dxdt,

Legendre transform V = §L/6U;, giving a Hamiltonian
formulation

g(W)://[;<MWt, W) — H(W, W)] dxdt,

Legendre transform again P = §L/0 Wy, giving a
multisymplectic Hamiltonian formulation

2(Z) = / / [1MZ, 2) + Y42, Z) — S(Z)] dxdt,

two symplectic structures and a Hamiltonian function S(Z2).
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Symmetry and conservation laws

Starting with
MZ +JZ, =VS(Z), ZeR",

with a one-parameter symmetry group

GyZ and i GyZ

de = 527

0=0

and associated conservation law
At + BX = 0)
the invariance of S(Z) in the multisymplectic setting gives

d d
=M= —J—G.Z
VAZ)=WM;GaZ| - and VB(Z)=dgGeZ|
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Moving frame: x — x — ct,
MZ + (J—cM)Z, =VS(Z), ZeR".
Let 3(0) =Jd—-cM
MZ +J(c)Z, = VS(Z), ZeR".
and proceed as before.
Criticality: %y —ca% =0,
and emergent KdV is replaced by
27 qr + (Brk — Ck)qqx + 2 (€)gxxx =0

with <7 (k, ¢) and £(k, c).

T.J. Bridges (Surrey) Modulation and water waves



Classical multiple scales vs modulation

Given a basic state, represented by 2(0, k), with 8 = kx + 6y, a
multiple scales perturbation would be

Z(x,t) = Z(0,k) + W0, X, T,e),

with slow space and time scales T = ¢%t, X = ¢fx.
Include modulation of the basic state

Z(x, 1) = Z(0 + %, k +£°q) + TW(0, X, T, ),

with slow space and time scales T = ¢°t, X = ¢fx.

They are equivalent ... but the second formulation encodes info
about basic state.
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@ homoclinic bifurcation from RE — clearly related to steady
KdV o”qqr — sqrrr with T replaced by X.

@ Must be a generalization to KDV

[?l9r + qgx + £ gxxx =0

where k is some curvature.

@ ad hoc approach: nf transforms in space then in time -
works: coefficient is related to CLAW density*

@ Not completely satisfactory approach ....
@ Roger Grimshaw: “... can you do it with a solvabity
condition?”

% TJB [2012] PRSLA, Emergence of DSWs
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History 2

MEMOIRS

Amdrican Mathe mazical sociey

Nubame 108 Vossler £
The Dynamics
of Modulated
fave Trains
Arjen Doelman
Bifrn Sandstede

Arnd Schesl
Guido Schnedder

Asmrin g Mal Sematin el S ety
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History 3: Doelman et al (2009)

Start with reaction diffusion system
U; =DU, +f(U), UeR”
with period solution U(H, k), 0 = kx — wt.

Modulate R
Ux, 1) =U(0 + ¢, k +£q) + 2 W,

with X = ex, T = £2t. Expansion and solvability lead to
gr +aqx = vqxx (Burger's equation)
Kivshar (1990): use modulation for defocussing NLS to KdV
(x, 1) = (W + £2q(X, T, ) )ei(kx+ed(X.T.0))

with T = 3t
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History 4: other influences

@ Hall & Hewitt (1998) modulation of shear flows in
Navier-Stokes leading to Burger’s equation coupled to
mean flow

@ Whitham (1965) modulation of periodic travelling waves
leading to conservation of wave action

@ Kivshar (1990) modulation of plane waves

@ Grimshaw (2012) Madelung transformation, solvability
condition

Combine: (a) generalize scaling ansatz ; (b) association with
symmetry & RE; (c) Lag/Ham/MSS setting; (d) use of geometry
of RE and conservation laws; (e) curvature & coefficients.
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