Modulation and water waves - Part 1

Thomas J. Bridges, University of Surrey

$$Q = h_0 u_0$$
 (mass flux)

$$R = gh_0 + \frac{1}{2}u_0^2$$
 (total head, Bernoulli energy).

Modulate the uniform flow

$$u = u_0 + \varepsilon q(X, T, \varepsilon), \quad X = \varepsilon x, \quad T = \varepsilon t \text{ (SWEs)}$$

$$u = u_0 + \varepsilon^2 q(X, T, \varepsilon), \quad X = \varepsilon x, \ T = \varepsilon^3 t \ (KdV).$$

$$Q = h_0 u_0$$
 (mass flux)

$$R = gh_0 + \frac{1}{2}u_0^2$$
 (total head, Bernoulli energy).

The flow is critical when

$$\frac{\partial Q}{\partial u_0}\Big|_{R \text{ fixed}} = 0.$$

Computing,

$$Q|_{R \text{ fixed}} = h_0 u_0 = \frac{u_0}{g} (R - \frac{1}{2}u_0^2).$$

Differentiate with respect to u_0 .

Computing,

$$\frac{\partial Q}{\partial u_0}\bigg|_{R \text{ fixed}} = \frac{1}{g}\left(R - \frac{3}{2}u_0^2\right) = \frac{1}{g}\left(gh_0 - u_0^2\right).$$

What does second derivative $\frac{\partial^2 Q}{\partial u_e^2}$

at the maximum mean?

Modulate the uniform flow:

$$u = u_0 + \varepsilon^2 q(X, T, \varepsilon), \quad X = \varepsilon x, \ T = \varepsilon^3 t.$$

Claim: q satisfies the KdV equation with

$$\left. \frac{2\mathcal{M}_u}{\partial T} \frac{\partial q}{\partial T} + \frac{\partial^2 Q}{\partial u_0^2} \right|_{R \text{ fixed}} q \frac{\partial q}{\partial X} + \mathscr{K} \frac{\partial^3 q}{\partial X^3} = 0 \,.$$

Modulation of the mass CLAW for the full water wave problem

$$M_t + Q_x = 0$$
,

where \mathcal{M} is M evaluated on the uniform flow.

Symmetry, modulation, and KdV

- basic state: (*h*₀, *u*₀)
- conservation laws: $Q_x = 0$ and $R_x = 0$
- symmetry of water wave problem: $\phi \mapsto \phi + \gamma$, for all $\gamma \in \mathbb{R}$
- the uniform flow is a symmetry induced solution:

$$\phi(\mathbf{x}, \mathbf{y}, t) = u_0 \mathbf{x} + \phi_0$$

- if the system is generated by a Lagrangian then symmetry implies the conservation law
- strategy: modulate basic state, use connection between symmetry and CLAW to get modulation equation

Symmetry, modulation, KdV

- Lagrangian $\int \int \int L dx dz dt$ (e.g. Luke's Lagr)
- One-parameter symmetry group \Rightarrow CLAW $A_t + B_x = 0$
- basic state: $\widehat{Z}(\theta, k)$ with $\theta = kx + \theta_0$
- modulate: $Z(x,t) = \widehat{Z}(\theta + \varepsilon \psi, k + \varepsilon^2 q) + \varepsilon^3 W(\theta, X, T)$
- Evaluate CLAW on basic state: $\mathscr{A}(k)$ and $\mathscr{B}(k)$
- If $\mathcal{B}'(k) = 0$ (criticality) then KdV emerges

$$2\mathscr{A}_k q_T + \mathscr{B}_{kk} qq_X + \mathscr{K} q_{XXX} = 0.$$

 \bullet $\mathscr K$: Krein signature, sign of momentum flux, dispersion relation,

Planar homoclinic bifurcation

Consider a parameter-dependent planar Hamiltonian system

$$-\dot{p} = \frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}, \quad \text{with} \quad H(q, p, \alpha).$$

Suppose there is a family of equilibria $(q_0(\alpha), p_0(\alpha))$.

Suppose further that at some value $\alpha=\alpha_0$ there is a saddle-centre transition of eigenvalues.

Planar homoclinic bifurcation

At the saddle-centre transition, there is a Jordan chain associated with the zero eigenvalue

$$\mathbf{L}\xi_1 = \mathbf{0}$$
 and $\mathbf{L}\xi_2 = \mathbf{J}\xi_1$.

The linear system can be transformed to (symplectic) Jordan normal form

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \widetilde{q} \\ \widetilde{p} \end{pmatrix}_t = \begin{bmatrix} 0 & 0 \\ 0 & s \end{bmatrix} \begin{pmatrix} \widetilde{q} \\ \widetilde{p} \end{pmatrix} \,, \quad (s = \pm 1 \text{ is a symplectic sign}) \,.$$

 $(\widetilde{q},\widetilde{p})$ are the transformed (q,p).

Planar homoclinic bifurcation – nonlinear theory

Introduce a nonlinear normal form transformation up to quadratic order. Again calling the new coordinates $\widetilde{q}(t)$ and $\widetilde{p}(t)$, they satisfy

$$\widetilde{q}_t = I - \frac{1}{2}\kappa \widetilde{q}^2 + \cdots
\widetilde{q}_t = s\widetilde{p} + \cdots$$

where $I = c(\alpha - \alpha_0)$ is an unfolding parameter and

$$\kappa = \langle \xi_1, D^3 H(q_0, p_0)(\xi_1, \xi_1) \rangle$$

Nonlinear normal form found in textbooks ...

• ARNOLD ET AL, Dyn Sys III; MEYER & HALL, Ham Sys

Planar homoclinic bifurcation and curvature

Generates the familiar homoclinic (fish) diagram.

$$\begin{aligned}
-\widetilde{p}_t &= I - \frac{1}{2}\kappa \widetilde{q}^2 + \cdots \\
\widetilde{q}_t &= s\widetilde{p} + \cdots
\end{aligned}$$

Claim: more to the story – the coefficient κ is a curvature

The normal form can be interpreted as a modulation equation and the coefficient κ emerges from the modulation

$$\begin{array}{rcl}
-\widetilde{\rho}_t & = & I - \frac{1}{2}\alpha''\widetilde{q}^2 + \cdots \\
\widetilde{q}_t & = & s\widetilde{\rho} + \cdots
\end{array}$$

 α is a function of a parameter c: lift to (p, q, α) space

How to choose the c?

$$\boldsymbol{c} = \frac{\partial \boldsymbol{H}}{\partial \alpha}$$

Modulation and curvature

Claim: the family of equilibria satisfy

$$H_q = 0$$

$$H_p = 0$$

$$H_{\alpha} = c$$

Saddle-centre at $c = c_0 \Leftrightarrow \alpha'(c_0) = 0$

Nonlinear coefficient κ equals the curvature $\alpha''(c_0)$.

$$\begin{vmatrix} -\dot{p} = H_q \\ \dot{q} = H_p \\ -\dot{lpha} = 0 \end{vmatrix}$$
 standard lift

add in $\dot{\theta} = H_{\alpha}$ (symplectic lift)

Symplectic lifted system has symmetry! $\gamma \mapsto \theta + \gamma \quad \forall \gamma \in \mathbb{R}$.

The equilibrium becomes a RE, $\theta(t) = ct + c_0$

RE satisfy

$$H_q=0\,,\quad H_p=0\,,\quad H_{\alpha}=c\,.$$

Hamiltonian system on \mathbb{R}^4

$$\mathbf{J}Z_t = \nabla H(Z), \quad Z \in \mathbb{R}^4.$$
 (1)

One-parameter abelian symmetry group with RE:

$$\widehat{Z}(heta,c)$$
 where $heta=ct+ heta_0$.

Evaluate conserved quantity, $\alpha_t = 0$ on RE: $\alpha(c)$ Modulate (ansatz)

$$Z(t) = \widehat{Z}(\theta + \varepsilon \phi, c + \varepsilon^2 q) + \varepsilon^3 W(\theta, T, \varepsilon), \qquad (2)$$

where $\phi(T, \varepsilon)$ and $T = \varepsilon t$.

Substitute the ansatz

$$Z(t) = \widehat{Z}(\theta + \varepsilon \phi, c + \varepsilon^2 q) + \varepsilon^3 W(\theta, T, \varepsilon), \qquad (3)$$

into $\mathbf{J}Z_t = \nabla H(Z)$, expand everything in powers of ε

- ε^2 : $q = \phi_T$
- ε^3 : solvability for W_1 requires $\alpha'(c_0) = 0$ for some c_0
- ε^4 : solve equation for W_2
- ε^5 : solvability for W_3 if and only if

$$\alpha''(c_0)qq_T - sq_{TTT} = 0$$
.

Substitution of the ansatz, and equating terms up to ε^{5} to zero gives

$$q = \phi_T$$
 and $\alpha''(c_0)qq_T - sq_{TTT}$,

or, integrating the second equation and calling the constant of integration I,

$$\begin{array}{rcl}
-\dot{I} &=& 0 \\
-\dot{p} &=& I - \frac{1}{2}\alpha''(c_0)q^2 \\
\dot{\phi} &=& q \\
\dot{q} &=& sp.
\end{array}$$

Now reduce back to the planar system, giving the modulation characterisation of the planar normal form.

$$-\dot{p} = I - \frac{1}{2}\alpha''(c_0)q^2$$

$$\dot{q} = sp$$

$$-\dot{I} = 0$$

$$\dot{\phi} = q$$

The first two components recover the normal form, with a new interpretation of the coefficient of nonlinearity as a curvature.

Note that the spectrum of the linear system (the "dispersion relation") is not computed: the saddle-centre is predicted by $\alpha'(c_0)=0$.

Summary: saddle-centre, lift, RE, curvature, ...

Saddle-centre to homoclinic bifurcation

- Dynamical systems approach: compute eigenvalues, identify saddle-centre transition, normal form transformations, analyze normal form
- Geometric approach: lift equilibria to RE, generates function $\alpha(c)$, $\alpha'(c) = 0$ then implies saddle-centre, $\alpha''(c)$ gives coefficient of normal form, analyze normal form.
- Concomitantly, can modulate a family of RE, and generate conditions and normal form for homoclinic bifurcation
- $\alpha''(c_0)qq_T sq_{TTT} = 0$ with T replaced by X is steady KdV

KdV via RE and modulation

Where does the KdV equation come from?

Most widely used approach: the dispersion relation \Rightarrow KdV equation

For some system of PDEs, suppose the dispersion relation to leading order is

$$\omega = -c_0k + ak^3 + \cdots.$$

replace $i\omega$ by ∂_t and ik by ∂_x and add in nonlinearity

$$0 = \eta_t + c_0 \eta_x + a \eta_{xxx} + \left\{egin{array}{c} b \eta^2 \ b \eta \eta_x \ b \eta^2_x \end{array}
ight.$$

Symmetry argument leads to the middle choice. Now compute coefficients. The most difficult calculation is the coefficient b of the nonlinearity.

Derivation of KdV for water waves

- Assume shallow water: $h_0/L \rightarrow 0$. The limiting equation is the SWEs.
- "amplitude balances dispersion" introduce an amplitude parameter take amplitude and h_0/L to zero in appropriate ratio. Limiting equation is a two way Boussinesq SWE.
- Now uni-directionalise: split the Boussinesq equation into a left-running and right-running component. Result is a pair of KdV equations. (hidden assumption of criticality)
 - Shallow water is neither necessary nor sufficient for emergence of the KdV equation —

Emergence of KdV by modulating background state

- New observation: KdV emerges due to modulation of the background state
- The resulting KdV equation takes a universal form

$$2\mathscr{A}'(k)q_T + \mathscr{B}''(k)qq_X + \mathscr{K}q_{XXX} = 0$$

- Coefficients including nonlinearity reduced to an elementary calculation.
- KdV arises due to a critical point of a family of RE in the classic case the RE is a uniform flow.

The KdV equation in shallow water hydrodynamics

The KdV equation in shallow water is

$$2\mathscr{A}'(u_0)q_T+\mathscr{B}''(u_0)qq_X+\mathscr{K}q_{XXX}=0\,,$$

where, relative to a laboratory frame,

$$\mathscr{A}(u_0) = h_0 = \frac{1}{g}(R - \frac{1}{2}u_0^2) \quad \text{and} \quad \mathscr{A}'(u_0) = -\frac{u_0}{g}\,,$$

and

$$\mathscr{B}(u_0) = h_0 u_0 = \frac{u_0}{g} (R - \frac{1}{2}u_0^2)$$
 and $\mathscr{B}''(u_0) = -3\frac{u_0}{g}$.

KdV in shallow water continued

Substituting

$$-2\frac{u_0}{g}q_T - 3\frac{u_0}{g}qq_X + \frac{1}{3}h_0^3q_{XXX} = 0\,,$$

and computing $\mathcal{K} = h_0^3/3$. Now let $q = -u_0 h/h_0$, then

$$-\frac{1}{u_0}h_T+\frac{3}{2h_0}hh_X+\frac{1}{6}h_0^3h_{XXX}=0\,,$$

the familiar form of the KdV found in textbooks, noting that $u_0 = \pm \sqrt{gh_0}$ (since $\mathscr{B}'(u_0) = 0$).

$$\mathscr{K}=rac{2\mathscr{A}_{\mathit{U}}}{6}\omega_{\mathit{kkk}}=\Delta\mathcal{S}=rac{h_0^3}{3}\,.$$

Dynamical systems interpretation of ${\mathscr K}$

Write the universal KdV as a first order system

$$\begin{aligned}
-\mathcal{A}_k q_T - \mu_X &= 0 \\
\mathcal{A}_k \phi_T - p_X &= \mu - \frac{1}{2} \mathcal{B}_{kk} q^2 \\
\phi_X &= q \\
q_X &= sp \quad s = -\mathcal{K},
\end{aligned}$$

Steady RE: $\phi(X) = cX + \phi_0$. There are 4 classes depending on the sign of s and $\kappa = \mathcal{B}_{kk}$. e^{\pm} are the Krein signatures of the "incoming" periodic solution.

Emergence of KdV based on modulation of RE

Consider a PDE with Lagrangian

$$\mathscr{L}(Z) = \int \int L(Z_t, Z_x, Z) \, \mathrm{d}x \mathrm{d}t,$$

with Euler-Lagrange equation

$$\frac{\partial}{\partial t} \left(\frac{\delta L}{\delta Z_t} \right) + \frac{\partial}{\partial x} \left(\frac{\delta L}{\delta Z_x} \right) - \frac{\delta L}{\delta Z} = 0.$$

Symmetry, Noether, CLAW, relative equilibrium

$$Z(x,t) = \widehat{Z}(\theta,k), \quad \theta = kx + \theta_0,$$

associated with symmetry and a conservation law

$$A_t + B_x = 0$$
.

Modulate:
$$Z(x,t) = \hat{Z}(\theta + \varepsilon \psi, k + \varepsilon^2 q) + \varepsilon^3 W(\theta, X, T, \varepsilon)$$

Modulate and expand in powers of ε

Modulate the family of RE: $\hat{Z}(\theta, k)$

$$Z(x,t) = \widehat{Z}(\theta + \varepsilon \psi, k + \varepsilon^2 q) + \varepsilon^3 W(\theta, X, T, \varepsilon),$$

with $\psi(X, T, \varepsilon)$, $q(X, T, \varepsilon)$ and scaling

$$T = \varepsilon^3 t$$
 and $X = \varepsilon x$.

With
$$W = W_1 + \varepsilon W_1 + \varepsilon^2 W_2 + \cdots$$
, the ε^n terms give

$$\varepsilon^2$$
: $q=\psi_X$

 ε^3 : equation for W_1 solvable iff $\mathscr{B}'(k) = 0$

 ε^4 : gives equation for W_2 ,

Fifth order terms

and at ε^5 ,

$$\mathbf{L} \textit{W}_{3} = \big(\mathbf{M}\widehat{\textit{Z}}_{\textit{k}} + \mathbf{J}\zeta\big) \frac{\mathbf{q}_{\textit{T}}}{\mathbf{q}_{\textit{T}}} + \big(\mathbf{J}\widehat{\textit{Z}}_{\textit{kk}} + \mathbf{J}(\widehat{\xi_{3}})_{\theta} - \textit{D}^{3}\textit{S}(\widehat{\textit{Z}}^{\textit{o}})(\widehat{\textit{Z}}_{\textit{k}},\widehat{\xi_{3}})\big) \frac{\mathbf{q}\mathbf{q}_{\textit{X}}}{\mathbf{q}_{\textit{XXX}}} \,.$$

Solvability gives (after a few pages!)

$$2\mathscr{A}'(k)q_T + \mathscr{B}''(k)qq_X + \mathscr{K}q_{XXX} = 0$$

Symmetry and conservation laws

 $\label{eq:local_local_local} \mbox{Lagrangian + symmetry + Noether's Theorem} \Rightarrow \mbox{CLAW}$ Consider a classical finite-dimensional Hamiltonian system

$$\mathbf{J}Z_t = \nabla H(Z)$$
.

Suppose it has a one-parameter symmetry with action and generator

$$G_{\theta}Z$$
 and $\frac{d}{d\theta}G_{\theta}Z\Big|_{\theta=0}=\widehat{Z}_{\theta}$.

Then invariance of $H: H(G_{\theta}Z) = H(Z)$ gives $A_t = 0$ with

$$A(Z) = \frac{1}{2} \langle \mathbf{J} \widehat{Z}_{\theta}, Z \rangle \quad \Rightarrow \quad \nabla A(Z) = \mathbf{J} \widehat{Z}_{\theta}.$$

Hence

$$\mathscr{A}_{c} = \langle \nabla A(\widehat{Z}), \widehat{Z}_{c} \rangle = \langle \mathbf{J} \widehat{Z}_{\theta}, \widehat{Z}_{c} \rangle.$$

Lagrangian → Hamiltonian → Multisymplectic

Start with a Lagrangian formulation

$$\mathscr{L}(U) = \int \int L(U_t, U_x, U) dx dt,$$

Legendre transform $V = \delta L/\delta U_t$, giving a Hamiltonian formulation

$$\mathscr{L}(W) = \int \int \left[\frac{1}{2} \langle \mathbf{M} W_t, W \rangle - H(W_x, W) \right] dx dt,$$

Legendre transform again $P = \delta L/\delta W_x$, giving a multisymplectic Hamiltonian formulation

$$\mathscr{L}(Z) = \int \int \left[\frac{1}{2} \langle \mathbf{M} Z_t, Z \rangle + \frac{1}{2} \langle \mathbf{J} Z_x, Z \rangle - S(Z) \right] dx dt,$$

two symplectic structures and a Hamiltonian function S(Z).

Symmetry and conservation laws

Starting with

$$\mathbf{M}Z_t + \mathbf{J}Z_x = \nabla S(Z), \quad Z \in \mathbb{R}^n,$$

with a one-parameter symmetry group

$$G_{\theta}Z$$
 and $\frac{d}{d\theta}G_{\theta}Z\bigg|_{\theta=0}=\xi Z$,

and associated conservation law

$$A_t + B_x = 0,$$

the invariance of S(Z) in the multisymplectic setting gives

$$abla A(Z) = \mathbf{M} rac{d}{d heta} G_{ heta} Zigg|_{ heta=0} \quad ext{and} \quad
abla B(Z) = \mathbf{J} rac{d}{d heta} G_{ heta} Zigg|_{ heta=0}$$

Moving frame

Moving frame: $x \mapsto x - ct$,

$$\mathbf{M}Z_t + (\mathbf{J} - c\mathbf{M})Z_{\mathsf{X}} = \nabla S(Z), \quad Z \in \mathbb{R}^n.$$

Let
$$\widehat{\mathbf{J}}(c) = \mathbf{J} - c\mathbf{M}$$

$$\mathbf{M} Z_t + \widehat{\mathbf{J}}(c) Z_x = \nabla S(Z) \,, \quad Z \in \mathbb{R}^n \,.$$

and proceed as before.

Criticality:
$$\mathscr{B}_k - c\mathscr{A}_k = 0$$
,

and emergent KdV is replaced by

$$2\mathscr{A}_{k}q_{T}+(\mathscr{B}_{kk}-c\mathscr{A}_{kk})qq_{X}+\mathscr{K}(c)q_{XXX}=0$$

with $\mathcal{A}(k,c)$ and $\mathcal{B}(k,c)$.

Classical multiple scales vs modulation

Given a basic state, represented by $\widehat{Z}(\theta, k)$, with $\theta = kx + \theta_0$, a multiple scales perturbation would be

$$Z(x,t) = \widehat{Z}(\theta,k) + \varepsilon^{d} \widetilde{W}(\theta,X,T,\varepsilon),$$

with slow space and time scales $T = \varepsilon^{\alpha}t$, $X = \varepsilon^{\beta}x$. Include modulation of the basic state

$$Z(x,t) = \widehat{Z}(\theta + \varepsilon^{a}\psi, k + \varepsilon^{b}q) + \varepsilon^{d}W(\theta, X, T, \varepsilon),$$

with slow space and time scales $T = \varepsilon^{\alpha} t$, $X = \varepsilon^{\beta} x$.

They are equivalent ... but the second formulation encodes info about basic state.

History

- homoclinic bifurcation from RE clearly related to steady KdV $\alpha''qq_T sq_{TTT}$ with T replaced by X.
- Must be a generalization to KDV

$$[?]q_T + \kappa qq_X + \mathcal{K}q_{XXX} = 0$$

where κ is some curvature.

- ad hoc approach: nf transforms in space then in time works: coefficient is related to CLAW density★
- Not completely satisfactory approach
- Roger Grimshaw: "... can you do it with a solvabity condition?"
- ★ TJB [2012] PRSLA, Emergence of DSWs

History 2

History 3: Doelman et al (2009)

Start with reaction diffusion system

$$\mathbf{U}_t = \mathbf{D}\mathbf{U}_{xx} + \mathbf{f}(\mathbf{U}), \quad \mathbf{U} \in \mathbb{R}^n$$

with period solution $\hat{\mathbf{U}}(\theta, k)$, $\theta = kx - \omega t$. Modulate

$$\mathbf{U}(\mathbf{x},t) = \widehat{\mathbf{U}}(\theta + \phi, \mathbf{k} + \varepsilon \mathbf{q}) + \varepsilon^2 \mathbf{W},$$

with $X = \varepsilon x$, $T = \varepsilon^2 t$. Expansion and solvability lead to

$$q_T + aq_X = \nu q_{XX}$$
 (Burger's equation)

Kivshar (1990): use modulation for defocussing NLS to KdV

$$\Psi(x,t) = (\Psi_0 + \varepsilon^2 q(X,T,\varepsilon)) e^{i(kx + \varepsilon \phi(X,T,\varepsilon))}$$

with $T = \varepsilon^3 t$.

History 4: other influences

- Hall & Hewitt (1998) modulation of shear flows in Navier-Stokes leading to Burger's equation coupled to mean flow
- Whitham (1965) modulation of periodic travelling waves leading to conservation of wave action
- Kivshar (1990) modulation of plane waves
- Grimshaw (2012) Madelung transformation, solvability condition

Combine: (a) generalize scaling ansatz; (b) association with symmetry & RE; (c) Lag/Ham/MSS setting; (d) use of geometry of RE and conservation laws; (e) curvature & coefficients.