Fire-Sale Spillovers and Systemic Risk

Fernando Duarte and Thomas Eisenbach
Federal Reserve Bank of New York

August 2014

The views expressed in this presentation are those of the authors and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.
Introduction

Systemic risk monitoring and analysis

- Vulnerability to fire sales (externalities)
- Based on detailed balance sheet information
- Macro-prudential complement to micro-prudential stress tests
Introduction

- Systemic risk monitoring and analysis
 - Vulnerability to fire sales (externalities)
 - Based on detailed balance sheet information
 - Macro-prudential complement to micro-prudential stress tests

- Build on Greenwood, Landier & Thesmar (2012)
Introduction

- Systemic risk monitoring and analysis
 - Vulnerability to fire sales (externalities)
 - Based on detailed balance sheet information
 - Macro-prudential complement to micro-prudential stress tests

- Build on Greenwood, Landier & Thesmar (2012)

- **GLT**: 2011 cross-section released with European stress tests

- **We**: expand to panel analysis for US data
 - Commercial banks 2001–2013
 - Broker-dealers 2008–2013
Results

- Vulnerabilities building since early 2000s
 - Peak in 2008
 - Drop with gov’t interventions
Results

- Vulnerabilities building since early 2000s
 - Peak in 2008
 - Drop with gov’t interventions
- Large banks & asset classes impose most of the externalities
Results

- Vulnerabilities building since early 2000s
 - Peak in 2008
 - Drop with gov’t interventions
- Large banks & asset classes impose most of the externalities
- “Illiquidity concentration” key driver
 - **Commercial banks**: build-up of real estate loans
 - **Broker-dealers**: rapid changes in asset liquidity
 - **Both**: Heterogeneity affects systemicness
Results

- Vulnerabilities building since early 2000s
 - Peak in 2008
 - Drop with gov’t interventions

- Large banks & asset classes impose most of the externalities

- “Illiquidity concentration” key driver
 - Commercial banks: build-up of real estate loans
 - Broker-dealers: rapid changes in asset liquidity
 - Both: Heterogeneity affects systemicness

- Granger-cause other systemic risk measures
Framework
Framework – inputs

Note: Really a “framework” and not a “model”
Framework – inputs

Note: Really a “framework” and not a “model”

- Banks $i = 1, \ldots, I$ and assets $k = 1, \ldots, K$
Framework – inputs

Note: Really a “framework” and not a “model”

- Banks \(i = 1, \ldots, I \) and assets \(k = 1, \ldots, K \)
- Bank \(i \):
 - Total size \(a_i \)
 - Portfolio shares \(m_{ik} \)
 - Leverage \(b_i = d_i/e_i \)
Framework – inputs

Note: Really a “framework” and not a “model”

- Banks $i = 1, \ldots, I$ and assets $k = 1, \ldots, K$
- Bank i:
 - Total size a_i
 - Portfolio shares m_{ik}
 - Leverage $b_i = d_i / e_i$
- Liquidity (price impact) of asset k is ℓ_k (cf. Amihud, 2002)
Framework – inputs

Note: Really a “framework” and not a “model”

- Banks \(i = 1, \ldots, I \) and assets \(k = 1, \ldots, K \)
- Bank \(i \):
 - Total size \(a_i \)
 - Portfolio shares \(m_{ik} \)
 - Leverage \(b_i = d_i/e_i \)
- Liquidity (price impact) of asset \(k \) is \(\ell_k \) (cf. Amihud, 2002)
- Exogenous shock to assets \(F = [f_1, \ldots, f_K] \)
Hypothetical fire-sale scenario

1. Prices decline through shock F
Hypothetical fire-sale scenario

1. Prices decline through shock
2. Direct portfolio losses
Hypothetical fire-sale scenario

1. Prices decline through shock
 \[F \]
2. Direct portfolio losses
 \[AMF \]
3. Shortfall to regain target leverage
 \[BAMF \]

Total spillover losses:

\[\frac{1}{2} \]
Hypothetical fire-sale scenario

1. Prices decline through shock
2. Direct portfolio losses
3. Shortfall to regain target leverage
4. Proportional asset sales

Total spillover losses: \(F_{AMF} + B_{AMF} + M'B_{AMF} \)
Hypothetical fire-sale scenario

1. Prices decline through shock
2. Direct portfolio losses
3. Shortfall to regain target leverage
4. Proportional asset sales
5. Fire-sale price impact
Hypothetical fire-sale scenario

1. Prices decline through shock
2. Direct portfolio losses
3. Shortfall to regain target leverage
4. Proportional asset sales
5. Fire-sale price impact
6. Spillover portfolio losses
Hypothetical fire-sale scenario

1. Prices decline through shock
2. Direct portfolio losses
3. Shortfall to regain target leverage
4. Proportional asset sales
5. Fire-sale price impact
6. Spillover portfolio losses

Total spillover losses:
Spillover indicators

- **Aggregate vulnerability:**
 Fraction of system equity capital lost due to fire-sale spillovers
Spillover indicators

- **Aggregate vulnerability:**
 Fraction of system equity capital lost due to fire-sale spillovers

- **Systemicness of bank i:**
 Contribution of bank i’s fire sales to spillover losses
Spillover indicators

- **Aggregate vulnerability:**
 Fraction of system equity capital lost due to fire-sale spillovers

- **Systemicness of bank i:**
 Contribution of bank i’s fire sales to spillover losses

- **Systemicness of asset k:**
 Contribution of shock to asset k to spillover losses
Commercial banks
Commercial banks

- Balance sheet data from regulatory form FR Y-9C
 - “Call report” for consolidated BHC
 - Quarterly from 2001q1 to 2013q1
 - Public data
Commercial banks

- Balance sheet data from regulatory form FR Y-9C
 - “Call report” for consolidated BHC
 - Quarterly from 2001q1 to 2013q1
 - Public data

- Asset liquidity:
 - Time series more important than cross-section
 - Presentation: Agnostic benchmark $\ell_k = \ell$ for all k
 - Paper: Several liquidity scenarios for robustness
Aggregate vulnerability and factors

\[AV = a \times (b + 1) b \times \sum_{k'} \left[m_k^2 \ell_k' \sum_i \left(\mu_{ik'} \alpha_i \beta_i \right) \right] \]

“illiquidity concentration”
Liquidity proportional to system size

\[\frac{AV}{a} = (b + 1) b \times \text{leverage} \times \sum_{k'} [m_{k'}^2 \ell_{k'} \sum_i (\mu_{ik'} \alpha_i \beta_i)] \]

“illiquidity concentration”

The graph shows the relationship between AV/a, System leverage, and Illiq. Concentration from 2001q1 to 2013q1.
Most systemic banks

Top 5 spillover contributors in 2008q3
Most systemic asset classes

Top 5 spillover contributors in 2008q3

- RE loans
- C & I loans
- MBS
- Consumer loans
- ABS & debt sec.
Effect of bank heterogeneity

\[\frac{S_{A_k}}{S_{A_k}^*} = \ldots = \frac{\sum_{k'} m_{k'}^2 l_{k'} \sum_i \left(\mu_{ik'} \alpha_i \beta_i \mu_{ik} \right)}{\sum_{k'} m_{k'}^2 l_{k'}} \]
Analysis for broker-dealers
Broker-dealers

- Data from tri-party repo market collected by NY Fed
 - Main source of funding for broker-dealers (56% of liabilities)
 - Daily from July 2008 to August 2013 (we average monthly)
 - Confidential data

Construct collateralized sub-balance sheet

- **Assets**
 - Repo assets
 - Other assets

- **Liabilities**
 - Repo loans
 - Other debt

- **Repo haircuts**
- **Other equity**

- Captures most adjustments

Asset liquidity

- Haircuts: Information on time-series and cross-section
Broker-dealers

- Data from tri-party repo market collected by NY Fed
 - Main source of funding for broker-dealers (56% of liabilities)
 - Daily from July 2008 to August 2013 (we average monthly)
 - Confidential data

- Construct **collateralized sub-balance sheet**

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repo assets</td>
<td>Repo loans</td>
</tr>
<tr>
<td>Repo haircuts</td>
<td>Repo haircuts</td>
</tr>
<tr>
<td>Other assets</td>
<td>Other debt</td>
</tr>
<tr>
<td></td>
<td>Other equity</td>
</tr>
</tbody>
</table>

- Captures most adjustments
- Main source of selling pressure
Broker-dealers

- Data from tri-party repo market collected by NY Fed
 - Main source of funding for broker-dealers (56% of liabilities)
 - Daily from July 2008 to August 2013 (we average monthly)
 - Confidential data

- Construct collaterlalized sub-balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repo assets</td>
<td>Repo loans</td>
</tr>
<tr>
<td></td>
<td>Repo haircuts</td>
</tr>
<tr>
<td>Other assets</td>
<td>Other debt</td>
</tr>
<tr>
<td></td>
<td>Other equity</td>
</tr>
</tbody>
</table>

- Captures most adjustments
- Main source of selling pressure

- Asset liquidity
 - **Haircuts**: Information on time-series and cross-section
Information on liquidity in haircuts
Size-weighted average haircuts in percent

[Graph showing liquidity in haircuts for different asset categories over time from July 2008 to July 2013.]
Aggregate vulnerability and factors

\[AV = \underbrace{a \times (b + 1) b} \times \sum_{k'} \left[m_{k'}^2 \ell_{k'} \sum_i \mu_{ik'} \alpha_i \beta_i \right] \]

“illiquidity concentration”
Most systemic asset classes

Top 5 spillover contributors in Nov08
Effect of broker-dealer heterogeneity

\[
\frac{SA_k}{SA^*_k} = \ldots = \frac{\sum_{k',\ell} m_{k',\ell}^2 \mu_{ik,\alpha i \beta i \mu_{ik}}}{\sum_{k'} m_{k',\ell}^2 \ell_{k'}}
\]
Comparison with other systemic risk measures

Thanks to Stefano Giglio, Bryan Kelly and Seth Pruitt!
Commercial banks
AV with three most correlated measures (std. around mean)
Broker-dealers

AV with three most correlated measures (std. around mean)
Correlations and Granger-causality tests

<table>
<thead>
<tr>
<th></th>
<th>AV \rightarrow x (p-value)</th>
<th>x \rightarrow AV (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. banks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Herfin.</td>
<td>0.736</td>
<td>0.191</td>
</tr>
<tr>
<td>TED spread</td>
<td>0.707</td>
<td>0.001***</td>
</tr>
<tr>
<td>SysRisk</td>
<td>0.455</td>
<td>0.000***</td>
</tr>
<tr>
<td>Turbulence</td>
<td>0.448</td>
<td>0.000***</td>
</tr>
<tr>
<td>Market leverage</td>
<td>0.441</td>
<td>0.000***</td>
</tr>
<tr>
<td>Dyn. Caus. Ind.</td>
<td>0.423</td>
<td>0.006***</td>
</tr>
<tr>
<td>Broker dealers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TED spread</td>
<td>0.845</td>
<td>0.106</td>
</tr>
<tr>
<td>Realized vol.</td>
<td>0.813</td>
<td>0.001***</td>
</tr>
<tr>
<td>Turbulence</td>
<td>0.723</td>
<td>0.000***</td>
</tr>
<tr>
<td>MES (SRISK)</td>
<td>0.703</td>
<td>0.003***</td>
</tr>
<tr>
<td>Amihud illiq.</td>
<td>0.696</td>
<td>0.402</td>
</tr>
<tr>
<td>SysRisk</td>
<td>0.613</td>
<td>0.000***</td>
</tr>
</tbody>
</table>
Conclusion

- Systemic risk measure based on fire-sale externalities
 - Macro-prudential complement to micro-prudential stress tests
- Bottom-up approach with detailed balance sheet data
 - Book-value complement to top-down market-value measures