Rado’s Conjecture, Strong Chang’s Conjecture, Tree Properties and Two Cardinal Square Principles

Víctor Torres-Pérez

Vienna University of Technology

The Role of the Higher Infinite in Mathematics and Other Disciplines
Cambridge, United Kingdom. December 14th, 2015
Rado’s Conjecture (RC)

Definition (Rado’s Conjecture)

A family of intervals of a linearly ordered set is the union of countably many disjoint subfamilies (σ-disjoint) if and only if every subfamily of size ℵ₁ is σ-disjoint.
Rado’s Conjecture (RC)

Definition (Rado’s Conjecture)

A family of intervals of a linearly ordered set is the union of countably many disjoint subfamilies (σ-disjoint) if and only if every subfamily of size \aleph_1 is σ-disjoint.
Rado’s Conjecture (RC)

Definition (Rado’s Conjecture)

A family of intervals of a linearly ordered set is the union of countably many disjoint subfamilies (σ-disjoint) if and only if every subfamily of size \aleph_1 is σ-disjoint.
Todorˇcevi´c has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal. Moreover it is shown that RC is consistent with CH as well as consistent with the negation of CH. However MA_{ω_1} implies the negation of RC.
Todorčević has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal.
Todorčević has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal. Moreover it is shown that RC is consistent with CH as well as consistent with the negation of CH.
Todorčević has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal. Moreover it is shown that RC is consistent with CH as well as consistent with the negation of CH. However MA_{ω_1} implies the negation of RC.
Some applications of RC

Theorem (Todorˇcevi´c, 1993)
Rado’s Conjecture implies (some examples):
1. $2^{\omega_0} \leq \omega_2$,
2. $\theta^{\omega_0} = \theta$ for all regular $\theta \geq \omega_2$,
3. the Singular Cardinal Hypothesis,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*, etc.

Theorem (Feng, 1999)
Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.

Víctor Torres-Pérez
Rado’s Conjecture, Strong Chang’s Conjecture, Tree Properties
Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Rado's Conjecture implies (some examples):
1. $\aleph_0 \leq \omega_2$,
2. $\theta = \aleph_0$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
4. \Box_κ fails for every uncountable cardinal κ,
5. CC^*, etc.

Theorem (Feng, 1999)
Rado's Conjecture implies the presaturation of the nonstationary ideal on ω_1.

Víctor Torres-Pérez
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\aleph_0 \leq \omega_2$,
2. $\theta \aleph_0 = \theta$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
4. $\Box \kappa$ fails for every uncountable cardinal κ,
5. CC^*, etc.

Theorem (Feng, 1999)

Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.

Víctor Torres-Pérez
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,

Theorem (Feng, 1999)

Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
4. \Box_κ fails for every uncountable cardinal κ.
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^\aleph_0 \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
3. the *Singular Cardinal Hypothesis*,
4. \Box_κ fails for every uncountable cardinal κ,
5. CC^*, etc.
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*, etc.

Theorem (Feng, 1999)
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $2^{\aleph_0} \leq \omega_2$,
2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
3. the Singular Cardinal Hypothesis,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*, etc.

Theorem (Feng, 1999)

Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.
Rado’s Conjecture and special Aronszajn trees
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+.
We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T *special* if it can be decomposed into κ antichains.
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T *special* if it can be decomposed into κ antichains.

Theorem (Specker)
We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T *special* if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2-Aronszajn tree.
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2-Aronszajn tree.

Theorem (Todorcevic-T, 2012)
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2-Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC, the following are equivalent:
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2-Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC, the following are equivalent:

1. CH,
Rado’s Conjecture and special Aronszajn trees

We recall that an κ^+-Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ, but no chains of length κ^+. We call an κ^+-Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2-Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC, the following are equivalent:

1. CH,
2. there is a special \aleph_2-Aronszajn tree.
Strong Chang’s Conjecture

We consider the following strong version of Chang’s Conjecture:

Definition (CC∗):

For every regular cardinal $\kappa \geq \omega^2$, there are arbitrary large λ such that for every countable $M \prec H_\lambda$ and for every $a \in [\kappa]^{\omega_1}$, there is a countable $M^* \prec H_\lambda$ and $b \in M^* \cap [\kappa]^{\omega_1}$ such that $M^* \supseteq M$ and $M^* \cap \omega_1 = M \cap \omega_1$.

Víctor Torres-Pérez
Rado’s Conjecture, Strong Chang’s Conjecture, Tree Properties
Ascent paths and square sequences
We consider the following strong version of Chang’s Conjecture:
Strong Chang's Conjecture

We consider the following strong version of Chang's Conjecture:

Definition (CC*)
We consider the following strong version of Chang’s Conjecture:

Definition (CC*)

For every regular cardinal $\kappa \geq \omega_2$, there are arbitrary large λ such that for every countable $M \prec H_\lambda$ and for every $a \in [\kappa]^\omega_1$, there is a countable $M^* \prec H_\lambda$ and $b \in M^* \cap [\kappa]^\omega_1$ such that $M^* \supseteq M$ and $M^* \cap \omega_1 = M \cap \omega_1$.
Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

CC∗ is a consequence of RC. Actually, we proved the following:

Theorem
Under CC∗, the following are equivalent:
1. CH,
2. there is a special ℵ2-Aronszajn tree.
CC* is a consequence of RC. Actually, we proved the following:
CC* is a consequence of RC. Actually, we proved the following:

Theorem
CC* is a consequence of RC. Actually, we proved the following:

Theorem

Under CC, the following are equivalent:*
CC* is a consequence of RC. Actually, we proved the following:

Theorem

Under CC, the following are equivalent:

1. CH,
CC* is a consequence of RC. Actually, we proved the following:

Theorem

Under CC, the following are equivalent:

1. CH,
2. there is a special \aleph_2-Aronszajn tree.
The Tree Property (TP)

A regular cardinal κ has the tree property and we denote it by $\text{TP}(\kappa)$, if every tree T of height κ, with levels of size less than κ has a cofinal branch.
The Tree Property (TP)

Definition

A regular cardinal κ has the tree property and we denote it by $\text{TP}(\kappa)$, if every tree T of height κ, with levels of size less than κ has a cofinal branch.
The Tree Property (TP)

Definition

A regular cardinal κ has the *tree property* and we denote it by $\text{TP}(\kappa)$, if every tree T of height κ, with levels of size less than κ has a cofinal branch.
We list some results:
We list some results:
We list some results:

- $\text{TP}(\aleph_0)$ holds. (König)
We list some results:

- \(\text{TP}(\aleph_0)\) holds. (König)
- \(\text{TP}(\aleph_1)\) does not hold. (Aronszajn)
We list some results:

- $\text{TP}(\aleph_0)$ holds. (König)
- $\text{TP}(\aleph_1)$ does not hold. (Aronszajn)
- A tree of height ω_2 with levels of size at most ω has a cofinal branch. (Kurepa)
We list some results:

- $\text{TP}(\aleph_0)$ holds. (König)
- $\text{TP}(\aleph_1)$ does not hold. (Aronszajn)
- A tree of height ω_2 with levels of size at most ω has a cofinal branch. (Kurepa)

What about trees of height ω_2 and levels of size ω_1?
The Tree Property for ω_2
The Tree Property for ω_2

- CH implies there is a special \aleph_2-Aronszajn tree. (Specker)
The Tree Property for ω_2

- CH implies there is a special \aleph_2-Aronszajn tree. (Specker)
- PFA implies TP(ω_2). (Baumgartner)
The Tree Property for ω_2

- CH implies there is a special \aleph_2-Aronszajn tree. (Specker)
- PFA implies TP(ω_2). (Baumgartner)
A natural question is if under RC, the negation of the Continuum Hypothesis is enough to imply there are no \aleph_2-Aronszajn trees at all, i.e. if $\text{TP}(\omega_2)$ holds.
A natural question is if under RC, the negation of the Continuum Hypothesis is enough to imply there are no \aleph_2-Aronszajn trees at all, i.e. if $\text{TP}(\omega_2)$ holds.
Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Theorem (T.-Wu, 2015)
CC
∗
+
¬
CH
→
TP(ω²).

Víctor Torres-Pérez
We have the following:
We have the following:

Theorem (T.-Wu, 2015)
We have the following:

Theorem (T.-Wu, 2015)

\[\text{CC}^* + \neg \text{CH} \rightarrow \text{TP}(\omega_2). \]
The Strong Tree Property

Definition (Jech-Weiß)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{F_a \in P(2^a) : a \in [\kappa] < \lambda\}$ such that

1. for every $a \in [\kappa] < \lambda$, $|F_a| < \lambda$,
2. for $a, b \in [\kappa] < \lambda$, $a \subseteq b \rightarrow \forall f \in F_b \exists g \in F_a$ such that $f \upharpoonright a = g$.

We call $F = \bigcup_{a \in [\kappa] < \lambda} F_a$ a κ, λ-tree, and F_a the level a of F for $a \in [\kappa] < \lambda$.
The Strong Tree Property

Definition (Jech-Weiß)
The Strong Tree Property

Definition (Jech-Weiβ)
Let \(\kappa > \omega_1 \) be a regular cardinal, and \(\lambda \geq \kappa \).
Definition (Jech-Weiβ)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{ \mathcal{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda} \}$ such that
The Strong Tree Property

Definition (Jech-Weiβ)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{\mathcal{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

1. for every $a \in [\kappa]^{<\lambda}$, $|\mathcal{F}_a| < \lambda,$
The Strong Tree Property

Definition (Jech-Weiβ)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{ F_a \in P(2^a) : a \in [\kappa]^{<\lambda} \}$ such that

1. for every $a \in [\kappa]^{<\lambda}$, $|F_a| < \lambda$,
2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \rightarrow \forall f \in F_b \exists g \in F_a$ such that $f|_a = g$.

The Strong Tree Property

Definition (Jech-Weiś)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{\mathcal{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

1. for every $a \in [\kappa]^{<\lambda}$, $|\mathcal{F}_a| < \lambda$,

2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \rightarrow \forall f \in \mathcal{F}_b \exists g \in \mathcal{F}_a$ such that $f|_a = g$.

We call $\mathcal{F} = \bigcup_{a \in [\kappa]^{<\lambda}} \mathcal{F}_a$ a (κ, λ)-tree, and \mathcal{F}_a the level a of \mathcal{F} for $a \in [\kappa]^{<\lambda}$.
The Strong Tree Property

Definition (Jech-Weiß)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \geq \kappa$. Suppose we have a collection of sets $\{\mathcal{F}_a \in \mathcal{P}(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

1. for every $a \in [\kappa]^{<\lambda}$, $|\mathcal{F}_a| < \lambda$,
2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \rightarrow \forall f \in \mathcal{F}_b \exists g \in \mathcal{F}_a$ such that $f|_a = g$.

We call $\mathcal{F} = \bigcup_{a \in [\kappa]^{<\lambda}} \mathcal{F}_a$ a (κ, λ)-tree, and \mathcal{F}_a the level a of \mathcal{F} for $a \in [\kappa]^{<\lambda}$.
The Strong Tree Property

We furnish F with the following order: for $f, g \in F$, $f \leq F g$ if and only if $g \upharpoonright \text{dom}(f) = f$.

Observe that in general, $\leq F$ is not a tree order.
We furnish \mathcal{F} with the following order: for $f, g \in \mathcal{F}$, $f \leq_{\mathcal{F}} g$ if and only if $g\upharpoonright_{\text{dom}(f)} = f$.

Observe that in general, $\leq_{\mathcal{F}}$ is not a tree order.
The Strong Tree Property

We furnish \mathcal{F} with the following order: for $f, g \in \mathcal{F}$, $f \leq_{\mathcal{F}} g$ if and only if $g|_{\text{dom}(f)} = f$.

Observe that in general, $\leq_{\mathcal{F}}$ is not a tree order.
The Strong Tree Property

Definition
We say that λ has the Strong Tree Property if every (κ, λ)-tree has a cofinal branch for every $\kappa \geq \lambda$.
The Strong Tree Property

A cofinal branch through \mathcal{F} is a function $B : \kappa \to 2$ such that $B \upharpoonright a \in \mathcal{F}$ for every $a \in [\kappa]^{<\lambda}$.

Definition

We say that λ has the Strong Tree Property if every (κ, λ)-tree has a cofinal branch for every $\kappa \geq \lambda$.

Víctor Torres-Pérez
The Strong Tree Property

A cofinal branch trough \mathcal{F} is a function $B : \kappa \to 2$ such that $B\upharpoonright a \in \mathcal{F}$ for every $a \in [\kappa]^{<\lambda}$.

Definition
We say that λ has the Strong Tree Property if every (κ, λ)-tree has a cofinal branch for every $\kappa \geq \lambda$.

Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Theorem (Weiß)
PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)
CC^* and $\text{MA}_{\omega_1}(\text{Cohen})$ together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2015)
CC^* and $\neg \text{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary
RC and $\neg \text{CH}$ together imply \aleph_2 has the Strong Tree Property.
Theorem (Weiβ)
Theorem (Weiβ)

PFA implies \aleph_2 has the Strong Tree Property.
Theorem (Weiβ)

PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)
Theorem (Weiβ)

PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)

CC^* and $\text{MA}_{\omega_1}(\text{Cohen})$ together imply \aleph_2 has the Strong Tree Property.
Theorem (Weiβ)
PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)
CC^* and MA_{ω_1} (Cohen) together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2015)
CC^* and $\neg\mathsf{CH}$ together imply \aleph_2 has the Strong Tree Property.
Theorem (Weiß)
PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)
CC^* and $\text{MA}_{\omega_1}(\text{Cohen})$ together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2015)
CC^* and $\neg \text{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary
Theorem (Weiß)

PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)

CC* and MA$_{\omega_1}$ (Cohen) together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2015)

CC* and \negCH together imply \aleph_2 has the Strong Tree Property.

Corollary

RC and \negCH together imply \aleph_2 has the Strong Tree Property.
Weak squares

We recall the following variation on Jensen's principle \Box_κ.

Definition

For cardinals $\lambda \leq \kappa$, let $\Box_\lambda \kappa$ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C_\alpha) \leq \kappa$ for all $C_\alpha \in C_\alpha$.
3. If $C_\beta \in C_\beta$ and if α is a limit point of C_β, then $C_\beta \cap \alpha \in C_\alpha$.
We recall the following variation on Jensen’s principle \Box_κ.
Weak squares

We recall the following variation on Jensen’s principle \Box_κ.

Definition
Weak squares

We recall the following variation on Jensen’s principle \square_κ.

Definition
For cardinals $\lambda \leq \kappa$, let \square^λ_κ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C_\alpha) \leq \kappa$ for all $C_\alpha \in C_\alpha$.
3. If $C_\beta \in C_\beta$ and if α is a limit point of C_β, then $C_\beta \cap \alpha \in C_\alpha$.
Weak squares

We recall the following variation on Jensen’s principle □_κ.

Definition
For cardinals \(\lambda \leq \kappa \), let □_κ^\lambda be the statement that there is a sequence \(\langle C_\alpha : \alpha < \kappa^+ \rangle \) such that:

1. \(C_\alpha \) is a family of closed subsets of \(\alpha \) with at least one unbounded in \(\alpha \).
Weak squares

We recall the following variation on Jensen’s principle \Box_κ.

Definition

For cardinals $\lambda \leq \kappa$, let \Box^λ_κ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C) \leq \kappa$ for all $C \in C_\alpha$.
We recall the following variation on Jensen’s principle \square_κ.

Definition

For cardinals $\lambda \leq \kappa$, let \square^λ_κ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C) \leq \kappa$ for all $C \in C_\alpha$.
3. If $C \in C_\beta$ and if α is a limit point of C, then $C \cap \alpha \in C_\alpha$.
Weak squares

κ is a consequence of the cardinal assumption κ = κ and, as it is well-known, □κ is equivalent to the existence of a special κ+ Aronszajn tree. So we get the following corollary:

Corollary

Under CC∗, □ω₁ and CH are equivalent.
\(\square^{\kappa}_{\kappa} \) is a consequence of the cardinal assumption \(\kappa^{<\kappa} = \kappa \) and, as it is well-known, \(\square^{\kappa}_{\kappa} \) is equivalent to the existence of a special \(\kappa^+ \)-Aronszajn tree.
Weak squares

\(\square^\kappa_\kappa\) is a consequence of the cardinal assumption \(\kappa^{<\kappa} = \kappa\) and, as it is well-known, \(\square^\kappa_\kappa\) is equivalent to the existence of a special \(\kappa^+\)-Aronszajn tree.
So we get the following corollary:
Weak squares

□\kappa^+ is a consequence of the cardinal assumption \kappa^{<\kappa} = \kappa and, as it is well-known, □\kappa^+ is equivalent to the existence of a special \kappa^+-Aronszajn tree.
So we get the following corollary:

Corollary
\square_κ^κ is a consequence of the cardinal assumption $\kappa^{<\kappa} = \kappa$ and, as it is well-known, \square_κ^κ is equivalent to the existence of a special κ^+-Aronszajn tree.

So we get the following corollary:

Corollary

Under CC, $\square_{\omega_1}^{\omega_1}$ and CH are equivalent.*
We proved actually the following:

Theorem (Todorcevic-T., 2012)
Assume RC. Then the following holds:

$\neg \Box <\kappa \kappa$ for any uncountable cardinal κ,
$\neg \Box \omega_1 \omega_1$,
$\neg \Box \kappa \kappa$ for every singular cardinal of cofinality ω.

Víctor Torres-Pérez

Rado’s Conjecture, Strong Chang’s Conjecture, Tree Properties and Two Cardinal Square Principles
We proved actually the following:
We proved actually the following:

Theorem (Todorcevic-T., 2012)
We proved actually the following:

Theorem (Todorcevic-T., 2012)

Assume RC. Then the following holds:
We proved actually the following:

Theorem (Todorcevic-T., 2012)

Assume RC. Then the following holds:

- $\neg \Box_{<\kappa}^\kappa$ for any uncountable cardinal κ,
We proved actually the following:

Theorem (Todorcevic-T., 2012)

Assume RC. Then the following holds:

- $\neg \square^\kappa_\kappa$ for any uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \square^\omega_\omega$,
We proved actually the following:

Theorem (Todorcevic-T., 2012)

Assume RC. Then the following holds:

- $\neg \Box^<_\kappa$ for any uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \Box^{\omega_1}_{\omega_1}$,
- $\neg \Box^\kappa_\kappa$ for every singular cardinal of cofinality ω.
We proved actually the following:

Theorem (Todorcevic-T., 2012)

Assume RC. Then the following holds:

- $\neg \square^<\kappa$, for any uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \square^\omega_1$,
- $\neg \square^\kappa_\kappa$ for every singular cardinal of cofinality ω.

Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Theorem (Cummings-Magidor, Baumgartner)
Assume MM. Then we have the following:
\[\neg \square < \text{cof}(\kappa) \kappa\]
whenever \(\kappa\) is an uncountable cardinal \(\kappa\),
\[\neg \square \omega_1 \omega_1\] (Baumgartner),
\[\neg \square \kappa \kappa\]
whenever \(\kappa\) is an uncountable cardinal of cofinality \(\omega\),
\[\neg \square \kappa < \kappa\]
whenever \(\kappa\) is an uncountable cardinal of cofinality \(\omega_1\).
Theorem (Cummings-Magidor, Baumgartner)
Theorem (Cummings-Magidor, Baumgartner)

Assume MM. Then we have the following:
Theorem (Cummings-Magidor, Baumgartner)

Assume MM. Then we have the following:

- \(\neg \square_{\kappa}^{\text{cof}(\kappa)} \) whenever \(\kappa \) is an uncountable cardinal \(\kappa \),
Theorem (Cummings-Magidor, Baumgartner)

Assume MM. Then we have the following:

- $\neg \Box_{\kappa}^{<\text{cof}(\kappa)}$ whenever κ is an uncountable cardinal κ,
- $\neg \Box_{\omega_1}^{\omega_1}$ (Baumgartner),

\Box_{κ} and \Box_{ω_1} denote the square principles at κ and ω_1, respectively.
Theorem (Cummings-Magidor, Baumgartner)

Assume MM. Then we have the following:

\[\neg \Box_{<\text{cof}(\kappa)} \kappa \text{ whenever } \kappa \text{ is an uncountable cardinal } \kappa, \]

\[\neg \Box_{\omega_1} \omega_1 \text{ (Baumgartner),} \]

\[\neg \Box_{\kappa}^\kappa \text{ whenever } \kappa \text{ is an uncountable cardinal of cofinality } \omega, \]
Theorem (Cummings-Magidor, Baumgartner)

Assume MM. Then we have the following:

1. $\neg \square_{\text{cof}(\kappa)}^{<\kappa}$ whenever κ is an uncountable cardinal κ,
2. $\neg \square_{\omega_1}^\omega$ (Baumgartner),
3. $\neg \square_{\kappa}^\kappa$ whenever κ is an uncountable cardinal of cofinality ω,
4. $\neg \square^{<\omega_1}^\kappa$ whenever κ is an uncountable cardinal of cofinality ω_1.
Cummings-Magidor Theorem

If there is a supercompact cardinal, then there is a class forcing extension where

\[\square^{\text{MM}} \]

and

\[\square^{\text{cof}(\kappa)} \]

\[\kappa \]

holds for every cardinal with \(\text{cof}(\kappa) > \omega_1 \),

\[\square^{\kappa} \]

\[\kappa \]

holds for every singular cardinal \(\kappa \) of cofinality \(\omega_1 \).
Theorem (Cummings-Magidor)
Theorem (Cummings-Magidor)

If there is a supercompact cardinal, then there is a class forcing extension where MM holds and
Theorem (Cummings-Magidor)

If there is a supercompact cardinal, then there is a class forcing extension where MM holds and

\[\square^\text{cof}(\kappa)_\kappa \text{ holds for every cardinal with } \text{cof}(\kappa) > \omega_1, \]
Theorem (Cummings-Magidor)

If there is a supercompact cardinal, then there is a class forcing extension where MM holds and

- □_{κ}^{\text{cof}(κ)} holds for every cardinal with \text{cof}(κ) > ω_1,
- □_{κ}^{κ} holds for every singular cardinal κ of cofinality ω_1.
Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Theorem (Sakai)
Assume CC
\[\neg \Box < \text{cof}(\kappa) \]
\[\kappa \]
whenever \(\kappa \) is an uncountable cardinal
\[\neg \text{CH} \implies \neg \Box \omega_1 \omega_1 \]
\[\neg \Box \kappa \kappa \]
whenever \(\kappa \) is an uncountable cardinal of cofinality \(\omega \)
\[\neg \Box < \kappa \kappa \]
whenever \(\kappa \) is an uncountable cardinal of cofinality \(\omega_1 \).
Theorem (Sakai)
Theorem (Sakai)

Assume CC^*. Then we have the following:
Theorem (Sakai)

Assume \mathbb{CC}^*. Then we have the following:

- $\neg \square^\prec_{\text{cof}(\kappa)} \kappa$ whenever κ is an uncountable cardinal κ,
Theorem (Sakai)

Assume CC^*. Then we have the following:

- $\neg \square^<_{\text{cof}(\kappa)}$ whenever κ is an uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \square^{\omega_1}_{\omega_1}$,
Theorem (Sakai)

Assume CC^*. Then we have the following:

- $\neg \Box^{<\text{cof}(\kappa)}_{\kappa}$ whenever κ is an uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \Box^{\omega_1}_{\omega_1}$,
- $\neg \Box^{\kappa}_{\kappa}$ whenever κ is an uncountable cardinal of cofinality ω,

Theorem (Sakai)

Assume CC^*. Then we have the following:

- $\neg \square^<_{\text{cof}(\kappa)}$ whenever κ is an uncountable cardinal κ,
- $\neg \text{CH}$ implies $\neg \square^\omega_{\omega_1}$,
- $\neg \square^\kappa_{\kappa}$ whenever κ is an uncountable cardinal of cofinality ω,
- $\neg \square^<_{\kappa}$ whenever κ is an uncountable cardinal of cofinality ω_1.
Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Ascent paths and square sequences

Theorem (Sakai)
If there is a supercompact cardinal, then there is a class forcing extension where
\(\square \cof(\kappa) \kappa \) holds for every cardinal with \(\cof(\kappa) > \omega_1 \),
\(\square \kappa \kappa \) holds for every singular cardinal \(\kappa \) of cofinality \(\omega_1 \).
Theorem (Sakai)
Theorem (Sakai)

If there is a supercompact cardinal, then there is a class forcing extension where RC holds and
Theorem (Sakai)

If there is a supercompact cardinal, then there is a class forcing extension where RC holds and

\[\square^\text{cof}(\kappa) \] holds for every cardinal with \(\text{cof}(\kappa) > \omega_1 \),
Theorem (Sakai)

If there is a supercompact cardinal, then there is a class forcing extension where RC holds and

- □⁺_{κ}^{\text{cof}(κ)} holds for every cardinal with \text{cof}(κ) > ω₁,
- □_{κ}^{κ} holds for every singular cardinal κ of cofinality ω₁.
Ascent paths and square sequences

Definition

Fix a regular cardinal θ. The principle $\square(\theta)$ holds if there is a sequence $\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle$ of subsets of θ such that for every $\delta \in \text{Lim}(\theta)$:

1. C_δ is a closed and unbounded subset of δ,
2. if $\gamma \in \text{Lim}(C_\delta)$, then $C_\delta \cap \gamma = C_\gamma$,
3. there is no closed unbounded set $C \subseteq \theta$ such that for every $\gamma \in \text{Lim}(C)$, $C \cap \gamma = C_\gamma$.

Víctor Torres-Pérez

Rado’s Conjecture, Strong Chang’s Conjecture, Tree Properties and Two Cardinal Square Principles
Ascent paths and square sequences

Definition

Fix a regular cardinal θ. The principle $\Box(\theta)$ holds if there is a sequence $\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle$ of subsets of θ such that for every $\delta \in \text{Lim}(\theta)$:

1. C_δ is a closed and unbounded subset of δ,
2. if $\gamma \in \text{Lim}(C_\delta)$, then $C_\delta \cap \gamma = C_\gamma$,
3. there is no closed unbounded set $C \subseteq \theta$ such that for every $\gamma \in \text{Lim}(C)$, $C \cap \gamma = C_\gamma$.
Ascent paths and square sequences

Definition
Fix a regular cardinal \(\theta \). The principle \(\square(\theta) \) holds if there is a sequence \(\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle \) of subsets of \(\theta \) such that for every \(\delta \in \text{Lim}(\theta) \):

1. \(C_\delta \) is a closed and unbounded subset of \(\delta \),
2. if \(\gamma \in \text{Lim}(C_\delta) \), then \(C_\delta \cap \gamma = C_\gamma \),
3. there is no closed unbounded set \(C \subseteq \theta \) such that for every \(\gamma \in \text{Lim}(C) \), \(C \cap \gamma = C_\gamma \).
Definition
Fix a regular cardinal θ. The principle $\square(\theta)$ holds if there is a sequence $\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle$ of subsets of θ such that for every $\delta \in \text{Lim}(\theta)$:

1. C_δ is a closed and unbounded subset of δ,

Ascent paths and square sequences

Definition
Fix a regular cardinal θ. The principle $\Box(\theta)$ holds if there is a sequence $\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle$ of subsets of θ such that for every $\delta \in \text{Lim}(\theta)$:

1. C_δ is a closed and unbounded subset of δ,
2. if $\gamma \in \text{Lim}(C_\delta)$, then $C_\delta \cap \gamma = C_\gamma$,

Definition
Fix a regular cardinal \(\theta \). The principle \(\Box(\theta) \) holds if there is a sequence \(\langle C_\delta : \delta \in \text{Lim}(\theta) \rangle \) of subsets of \(\theta \) such that for every \(\delta \in \text{Lim}(\theta) \):

1. \(C_\delta \) is a closed and unbounded subset of \(\delta \),
2. if \(\gamma \in \text{Lim}(C_\delta) \), then \(C_\delta \cap \gamma = C_\gamma \),
3. there is no closed unbounded set \(C \subseteq \theta \) such that for every \(\gamma \in \text{Lim}(C) \), \(C \cap \gamma = C_\gamma \).
Ascent paths and square sequences
Remark:
Ascent paths and square sequences

Remark:
\(\Box_{\kappa^+} \) implies \(\Box(\kappa^+) \).
Remark:
\(\Box_{\kappa^+} \text{ implies } \Box(\kappa^+).\)

Theorem (Todorcevic, 1993)
Remark:
\(\square_{\kappa^+} \implies \square(\kappa^+)\).

Theorem (Todorcevic, 1993)

RC implies the negation of \(\square(\theta)\) for every regular cardinal \(\theta \geq \omega_2\).
Remark:
□_{\kappa^+} implies □(\kappa^+).

Theorem (Todorcevic, 1993)
RC implies the negation of □(\theta) for every regular cardinal \(\theta \geq \omega_2 \).

Theorem (Sakai-Velickovic, 2015)
Remark:
\(\square_{\kappa^+} \) implies \(\square(\kappa^+) \).

Theorem (Todorcevic, 1993)

\(\text{RC implies the negation of } \square(\theta) \text{ for every regular cardinal } \theta \geq \omega_2. \)

Theorem (Sakai-Velickovic, 2015)

\(\text{CC}^* \text{ implies the negation of } \square(\theta) \text{ for every regular cardinal } \theta \geq \omega_2. \)
Ascent paths and square sequences

Definition

Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence C_δ ($\delta \in \text{Lim}(\theta)$) of families of subsets of θ is said to be a $\square^<\lambda(\theta)$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
2. for each $\delta \in \text{Lim}(\theta)$, each $C \in C_\delta$ is a closed and unbounded subset of δ,
3. if $C \in C_\delta$ and if $\gamma < \delta$ is a limit point of C then $C \cap \gamma$ belongs to C_γ.

Víctor Torres-Pérez
Ascent paths and square sequences

Definition

Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence $C_\delta (\delta \in \text{Lim}(\theta))$ of families of subsets of θ is said to be a $\square^{\theta < \lambda}$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
2. for each $\delta \in \text{Lim}(\theta)$, each $C \in C_\delta$ is a closed and unbounded subset of δ,
3. if $C \in C_\delta$ and if $\gamma < \delta$ is a limit point of C then $C \cap \gamma$ belongs to C_γ.
Ascent paths and square sequences

Definition
Fix a regular cardinal \(\theta \) and some other cardinal \(\lambda \leq \theta \).
Definition

Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence C_δ ($\delta \in \text{Lim}(\theta)$) of families of subsets of θ is said to be a $\Box_{<\lambda}(\theta)$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
2. for each $\delta \in \text{Lim}(\theta)$, each $C \in C_\delta$ is a closed and unbounded subset of δ,
3. if $C \in C_\delta$ and if $\gamma < \delta$ is a limit point of C then $C \cap \gamma$ belongs to C_γ.

Ascent paths and square sequences

Rado’s Conjecture
Some applications of RC
Special Aronszajn trees
The Tree Property
The Strong Tree Property
Weak squares
Definition
Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence C_δ ($\delta \in \text{Lim}(\theta)$) of families of subsets of θ is said to be a $\Box_{<\lambda}(\theta)$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
Definition
Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence C_δ ($\delta \in \text{Lim}(\theta)$) of families of subsets of θ is said to be a $\square^{<\lambda}\theta$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
2. for each $\delta \in \text{Lim}(\theta)$, each $C \in C_\delta$ is a closed and unbounded subset of δ.
Definition
Fix a regular cardinal θ and some other cardinal $\lambda \leq \theta$. A sequence C_δ ($\delta \in \text{Lim}(\theta)$) of families of subsets of θ is said to be a $\square_{<\lambda}(\theta)$-sequence whenever:

1. $|C_\delta| < \lambda$ for all $\delta \in \text{Lim}(\theta)$,
2. for each $\delta \in \text{Lim}(\theta)$, each $C \in C_\delta$ is a closed and unbounded subset of δ,
3. if $C \in C_\delta$ and if $\gamma < \delta$ is a limit point of C then $C \cap \gamma$ belongs to C_γ.
Ascent paths and square sequences
Ascent paths and square sequences

Definition

An ascendent path \(\theta \)-sequence \(\square < \lambda \)-sequence \(C \) is a sequence \(A_\xi (\xi < \theta) \) of nonempty subsets of \(\theta \) such that:

1. \(\xi < \eta \) implies \(A_\xi < A_\eta \), i.e., every ordinal of \(A_\xi \) is smaller than every ordinal of \(A_\eta \),
2. \(\xi < \eta \) implies that there exist \(\delta \in A_\eta \) and \(\gamma \in A_\xi \) and \(C \in C_\delta \) such that \(\gamma \) is a limit point of \(C \).
Ascent paths and square sequences

Definition

An ascent θ-path of the $\square_{<\lambda}(\theta)$-sequence C_δ ($\delta \in \text{Lim}(\theta)$) is a sequence A_ξ ($\xi < \theta$) of nonempty subsets of θ such that:

1. $\xi < \eta$ implies $A_\xi < A_\eta$, i.e., every ordinal of A_ξ is smaller than every ordinal of A_η,
2. $\xi < \eta$ implies that there exist $\delta \in A_\eta$ and $\gamma \in A_\xi$ and $C_\gamma \in C_\delta$ such that γ is a limit point of C_γ.

$\text{V} \acute{\text{i}}\text{c}\text{t}\text{o}r$ $\text{T}\text{o}\text{r}\text{e}$-$\text{P}\text{\'e}r\text{\'e}$

 Raf\text{\'o}$'\text{s} $\text{C}o\text{njecture}$, $\text{S}tr\text{\'o}ng$ $\text{C}h\text{\'a}ng's$ $\text{C}o\text{njecture}$, $\text{T}ree$ $\text{P}r\text{\'o}p\text{\'e}r\text{t}i\text{\'e}$s
Ascent paths and square sequences

Definition

An ascent θ-path of the $\square_{<\lambda}(\theta)$-sequence C_δ ($\delta \in \text{Lim}(\theta)$) is a sequence A_ξ ($\xi < \theta$) of nonempty subsets of θ such that:

1. $\xi < \eta$ implies $A_\xi < A_\eta$, i.e., every ordinal of A_ξ is smaller than every ordinal of A_η,
Ascent paths and square sequences

Definition

An ascent θ-path of the $\square_{<\lambda}(\theta)$-sequence C_δ ($\delta \in \text{Lim}(\theta)$) is a sequence A_ξ ($\xi < \theta$) of nonempty subsets of θ such that:

1. $\xi < \eta$ implies $A_\xi < A_\eta$, i.e., every ordinal of A_ξ is smaller than every ordinal of A_η,

2. $\xi < \eta$ implies that there exist $\delta \in A_\eta$ and $\gamma \in A_\xi$ and $C \in C_\delta$ such that γ is a limit point of C.
Definition

An ascent θ-path of the $\square_{<\lambda}(\theta)$-sequence C_δ ($\delta \in \text{Lim}(\theta)$) is a sequence A_ξ ($\xi < \theta$) of nonempty subsets of θ such that:

1. $\xi < \eta$ implies $A_\xi \subset A_\eta$, i.e., every ordinal of A_ξ is smaller than every ordinal of A_η,

2. $\xi < \eta$ implies that there exist $\delta \in A_\eta$ and $\gamma \in A_\xi$ and $C \in C_\delta$ such that γ is a limit point of C.
We recall that the existence of an ascent θ-path of sets of cardinality 1 is what is frequently worded as the triviality of the square sequence. Thus the existence of ascent θ-paths of subsets of θ of other small cardinalities is a natural weakening of this notion. In fact let us say that a given $\Box < \lambda (\theta)$-sequence $C_\delta (\delta < \theta)$ is κ-trivial whenever it admits an ascent θ-path consisting of nonempty sets of cardinalities at most κ.
Ascent paths and square sequences

We recall that the existence of an ascent θ-path of sets of cardinality 1 is what is frequently worded as the *triviality* of the square sequence.
Ascent paths and square sequences

We recall that the existence of an ascent θ-path of sets of cardinality 1 is what is frequently worded as the *triviality* of the square sequence. Thus the existence of ascent θ-paths of subsets of θ of other small cardinalities is a natural weakening of this notion.
We recall that the existence of an ascent θ-path of sets of cardinality 1 is what is frequently worded as the *triviality* of the square sequence. Thus the existence of ascent θ-paths of subsets of θ of other small cardinalities is a natural weakening of this notion. In fact let us say that a given $\square_{<\lambda}(\theta)$-sequence C_δ ($\delta < \theta$) is κ-*trivial* whenever it admits an ascent θ-path consisting of nonempty sets of cardinalities at most κ.
Definition

A family $F \subseteq \omega^\omega$ is called unbounded if for every $g \in \omega^\omega$, there is $f \in F$ such that
\[
\{ n \in \omega : f(n) \geq g(n) \}
\]
is infinite.

The bounding number b is the least cardinality of an unbounded family.

Theorem (Todorcevic-T., 2014)

Assume RC. Let θ be a regular cardinal $\geq \omega_2$ with the property that for every $\delta < \theta$, the set $[\delta]$ contains a closed and unbounded subset of size $< \theta$. Then every $\Box^{< b}(\theta)$-sequence $\langle C_\delta : \delta < \theta \rangle$ has an ascent θ-path of countable subsets of θ.

Víctor Torres-Pérez
Definition

A family $F \subseteq \omega^\omega$ is called unbounded if for every $g \in \omega^\omega$, there is $f \in F$ such that $\{n \in \omega : f(n) \geq g(n)\}$ is infinite.

The bounding number b is the least cardinality of an unbounded family.

Theorem (Todorcevic-T., 2014)
Assume RC. Let θ be a regular cardinal $\geq \omega^2$ with the property that for every $\delta < \theta$, the set $[\delta, \omega)$ contains a closed and unbounded subset of size $< \theta$. Then every $\square_{\text{b}(\theta)}$-sequence $\langle C_\delta : \delta < \theta \rangle$ has an ascent θ-path of countable subsets of θ.
Definition

A family $F \subseteq \omega^\omega$ is called *unbounded* if for every $g \in \omega^\omega$, there is $f \in F$ such that $\{n : \in \omega : f(n) \geq g(n)\}$ is infinite.
Definition

A family $F \subseteq \omega^\omega$ is called *unbounded* if for every $g \in \omega^\omega$, there is $f \in F$ such that $\{n : \in \omega : f(n) \geq g(n)\}$ is infinite.

The *bounding number* b is the least cardinality of an unbounded family.
Definition

A family $F \subseteq \omega^\omega$ is called \textit{unbounded} if for every $g \in \omega^\omega$, there is $f \in F$ such that $\{ n \in \omega : f(n) \geq g(n) \}$ is infinite.

The \textit{bounding number} b is the least cardinality of an unbounded family.

Theorem (Todorcevic-T., 2014)
Definition

A family \(F \subseteq \omega^\omega \) is called \textit{unbounded} if for every \(g \in \omega^\omega \), there is \(f \in F \) such that \(\{ n : n \in \omega : f(n) \geq g(n) \} \) is infinite.

The \textit{bounding number} \(b \) is the least cardinality of an unbounded family.

Theorem (Todorcevic-T., 2014)

Assume \(RC \). Let \(\theta \) be a regular cardinal \(\geq \omega_2 \) with the property that for every \(\delta < \theta \), the set \([\delta]^{\omega}\) contains a closed and unbounded subset of size \(< \theta \). Then every \(\Box_{<b} (\theta) \)-sequence \(\langle \mathcal{C}_\delta : \delta < \theta \rangle \) has an ascent \(\theta \)-path of countable subsets of \(\theta \).
Theorem (T.-Wu, 2015)

Assume CC^*. Then every $\square^{<\omega_1}(\theta)$-sequence is 1-trivial for every regular cardinal $\theta \geq \omega_2$.
Thanks!