Evaluating winding numbers through Cauchy indices in Isabelle/HOL

Wenda Li

University of Cambridge
wl302@cam.ac.uk

July 17, 2017
Contributions

★ A novel tactic to evaluate a winding number through Cauchy indices.

★ Novel verified procedures to count the number of complex roots of a polynomial in some domain (e.g. a rectangle, a half plane).
What is a winding number?

The winding number $n(\gamma, z_0)$ is the number of times the path γ travels counterclockwise about the point z_0.

For example, $n(\gamma, a) = -1$, $n(\gamma, b) = 1$ and $n(\gamma, c) = 0$.

Formally, we can have

$$n(\gamma, z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{dw}{w - z}.$$
A motivating example

To evaluate an improper integral:

\[
\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}
\]

Let

\[C_R(t) = Re^{it}\]

\[L_R(t) = (1 - t)(-R) + tR\]

\[\gamma = L_R + C_R,\]

\[
\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \lim_{R \to \infty} \int_{L_R + C_R} \frac{dx}{x^2 + 1}
\]

\[= 2\pi i (\text{Res}(\gamma, i) n(\gamma, i) + \text{Res}(\gamma, -i) n(\gamma, -i)) = \pi\]
Previous proof for $n(L_R + C_R, i) = 1$

Let

$$C'_R(t) = \text{Re}^{it} \quad \text{for } t \in [\pi, 2\pi].$$

As $C_R + C'_R$ is a circular path, we have

$$n(C_R + C'_R, i) = 1$$

Moreover, we can show that $C_R + C'_R$ and $L_R + C_R$ are homotopic on $\mathbb{C} - \{i\}$, hence

$$n(L_R + C_R, i) = n(C_R + C'_R, i) = 1$$

which concludes the proof.
Let L'_R be a ray such that

$$L'_R(t) = (-i) - ti \quad \text{for } t \in [0, \infty).$$

We can then show that L'_R does not intersect with $L_R + C_R$, hence

$$|\text{Re}(n(L_R + C_R, -i))| < 1.$$

Since $n(L_R + C_R, -i) \in \mathbb{Z}$, we have $n(L_R + C_R, -i) = 0$ and conclude the proof.
My previous proofs for $n(L_R + C_R, i) = 1$ and $n(L_R + C_R, -i) = 0$ are ad hoc and involve manual construction of auxiliary paths/rays.

Is there a more systematic/uniform approach?
Approximate a winding number

Suppose we know that γ counterclockwise crosses the imaginary axis exactly once at $\gamma(t_0)$ such that $\text{Re}(\gamma(t_0)) > 0$. We then have

$$0 < \theta < 2\pi,$$

and hence

$$\text{Re}(n(\gamma, 0)) = \frac{\theta}{2\pi} \in (0, 1).$$

That is, we can approximate the real part of a winding number by the way it crosses the imaginary axis.
Approximate a winding number

\[f(t) = \frac{\text{Im}(\gamma(t))}{\text{Re}(\gamma(t))} \]

Here, we have \(\text{jump}(f, t_0) = -1 \).
The Cauchy index

By summing the jumps of \(f \) over some interval \((a, b)\) we can define the Cauchy index \(\text{Ind}_{a}^{b}(f) \):

\[
\text{Ind}_{a}^{b}(f) = \sum_{x \in (a, b)} \text{jump}(f, x),
\]

which leads to a way to approximate \(\text{Re}(n(\gamma, z_{0})) \) for \(\gamma : [a, b] \rightarrow \mathbb{C} \):

\[
\left| \text{Re}(n(\gamma, z_{0})) + \frac{\text{Ind}(\gamma, z_{0})}{2} \right| < \frac{1}{2}.
\]

where

\[
f(t) = \frac{\text{Im}(\gamma(t) - z_{0})}{\text{Re}(\gamma(t) - z_{0})}
\]

\[
\text{Ind}(\gamma, z_{0}) = \text{Ind}_{a}^{b}(f)
\].
Given

\[\left| \text{Re}(n(\gamma, z_0)) + \frac{\text{Ind}(\gamma, z_0)}{2} \right| < \frac{1}{2}, \]

if we also know that \(\gamma \) is a loop, we have \(n(\gamma, z_0) \in \mathbb{Z} \), hence

\[n(\gamma, z_0) = -\frac{\text{Ind}(\gamma, z_0)}{2} \]

as \(\text{Ind}(\gamma, z_0) \in \mathbb{Z} \) by definition.
New proof for $n(L_R + C_R, i) = 1$

$$n(L_R + C_R, i) = -\frac{\text{Ind}(L_R + C_R, i)}{2}$$

$$= -\frac{1}{2}(\text{Ind}(L_R, i) + \text{Ind}(C_R, i))$$

$$= -\frac{1}{2}((-1) + (-1))$$

$$= 1$$
A tactic for \(n(\gamma_1 + \gamma_2 + \ldots + \gamma_n, z_0) = k \)

For the general cases, I have built a tactic to convert

\[
n(\gamma_1 + \gamma_2 + \ldots + \gamma_n, z_0) = k
\]

into

\[
-\frac{1}{2}(\text{Ind}(\gamma_1, z_0) + \text{Ind}(\gamma_2, z_0) + \ldots + \text{Ind}(\gamma_n, z_0)) = k
\]

where \(\gamma_1 + \gamma_2 + \ldots + \gamma_n \) is a loop. When each \(\gamma_j \) is either a linear path

\[
\gamma_j(t) = (1 - t)z_1 + tz_2 \quad \text{for} \ t \in [0, 1]
\]

or part of a circular path

\[
\gamma_j(t) = z + Re^{it} \quad \text{for} \ t \in [a, b],
\]

deciding \(\text{Ind}(\gamma_j, z_0) \) is usually straightforward.
Count the number of complex roots of a polynomial?

Thanks to the argument principle,

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{p'(x)}{p(x)} dx = N$$

where γ is a loop, $p \in \mathbb{C}[x]$ and N is the number of complex roots of p counted with multiplicity inside the path γ.

By the definition of winding numbers, we have

$$n(p \circ \gamma, 0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{p'(x)}{p(x)} dx$$

hence

$$n(p \circ \gamma, 0) = N.$$
Deciding the number of complex roots in a rectangle

Let N be the number of complex roots of a polynomial p inside the rectangle path $L_1 + L_2 + L_3 + L_4$.

We have

$$N = n(p \circ (L_1 + L_2 + L_3 + L_4), 0)$$

$$= -\frac{1}{2} (\text{Ind}(p \circ L_1, 0) + \text{Ind}(p \circ L_2, 0) + \text{Ind}(p \circ L_3, 0) + \text{Ind}(p \circ L_4, 0))$$
Deciding the number of complex roots in a rectangle

Given \(p \in \mathbb{C}[x] \) and a linear path \(L : [0, 1] \to \mathbb{C} \), the path

\[
p \circ L : [0, 1] \to \mathbb{C}
\]

is neither a linear path nor part of a circular path. Can we still evaluate \(\text{Ind}(p \circ L, 0) \)?

Yes, thanks to the Sturm-Tarski theorem,

\[
\text{Ind}(p \circ L, 0) = \text{Var}(\text{SRemS}(q_1, q_2; 0, 1))
\]

where \(q_1, q_2 \in \mathbb{R}[x] \) and

\[
p \circ L(t) = q_1(t) + iq_2(t).
\]
Deciding the number of complex roots in a rectangle

For example, to count the number of complex roots of the polynomial

\[p(x) = x^2 - 2ix - 1 = (x - i)^2 \]

inside the rectangle defined by \((-1, 2 + 2i)\).

We can type the following command in Isabelle:

```
value "proots_rectangle [:-1,-2*ii,1:] (Complex (-1) 0) (Complex 2 2)"
```

which will return 2 as \(p\) has exactly two complex roots (i.e. \(i\) with multiplicity 2) within the rectangle box \((-1, 2 + 2i)\).
Deciding the number of complex roots in a half plane

Similarly, we can now use the following command

\[
\text{value} \ "\text{proots}_\text{half} [:1-\text{i},2-\text{i},1:] \ 0 (\text{Complex} \ 0 \ 1)"
\]

to decide that the polynomial

\[
p(x) = x^2 + (2 - i)x + (1 - i) = (x + 1)(x + 1 - i)
\]

has exactly two roots within the left-half plane of the imaginary axis.

- Routh-Hurwitz stability criterion
Remarks

- About 13000 LOC, 7 months.

- Subtleties (e.g. missing assumptions and corner cases) in almost every formulation of this problem.
Conclusion

In this talk, I have described:

- A tactic to evaluate a winding number through Cauchy indices;
- Verified procedures to count the number of complex roots.

Thanks for your attention.