skip to content
 

On the class of perfectly null sets and its transitive version

Presented by: 
M Korch Uniwersytet Warszawski
Date: 
Wednesday 26th August 2015 - 14:00 to 14:30
Venue: 
INI Seminar Room 1
Abstract: 
The ideals of universally null sets (UN, sets which are null with respect to any Borel diffused measure) and perfectly meager sets (PM, sets which are meager when restricted to any perfect set) are best known among the classes of special subsets of the real line. Those two ideals were long considered to be somehow dual, though some differences were also known. P. Zakrzewski proved that two other earlier defined classes of sets smaller then PM coincide and are dual to UN. Therefore he proposed to call this class universally meager sets. The PM class was left without a counterpart, and we try to define a class of sets which may play the role of a dual class to PM and we also consider its transitive version. I will present some properties of those classes and give few important problems which are still open.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons