skip to content

On relating strong type theories and set theories

Presented by: 
M Rathjen University of Leeds
Tuesday 15th December 2015 - 10:00 to 11:00
INI Seminar Room 1
There exists a fairly tight fit between type theories à la Martin-Löf and constructive set theories such as CZF and its extension, and there are connections to classical Kripke-Platek set theory and extensions thereof, too. The technology for determining the (exact) proof-theoretic strength of such theories was developed in the late 20th century. The situation is rather different when it comes to type theories (with universes) having the impredicative type of propositions Prop from the Calculus of Constructions that features in some powerful proof assistants. Aczel's sets-as-types interpretation into these type theories gives rise to rather unusual set-theoretic axioms: negative power set and negative separation. But it is not known how to determine the consistency strength of intuitionistic set theories with such axioms via familiar classical set theories (though it is not difficult to see that ZFC plus infinitely many inaccessibles provides an upper bound). The first part of the talk will be a survey of known results from this area. The second part will be concerned with the rather special computational and proof-theoretic behavior of such theories.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons