skip to content

Coarse non-amenability and coarse embeddings

Presented by: 
G Arzhantseva [Vienna]
Wednesday 12th January 2011 - 14:00 to 15:00
INI Seminar Room 1
The concept of coarse embedding was introduced by Gromov in 1993. It plays an important role in the study of large-scale geometry of groups and the Novikov higher signature conjecture. Guoliang Yu's property A is a weak amenability-type condition that is satisfied by many known metric spaces. It implies the existence of a coarse embedding into a Hilbert space.

We construct the first example of a metric space with bounded geometry which coarsely embeds into a Hilbert space, but does not have property A. This is a joint work with Erik Guentner and Jan Spakula.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons