skip to content
 

Sharp threshold for percolation on expanders

Presented by: 
G Lugosi [Barcelona]
Date: 
Wednesday 30th March 2011 - 10:00 to 11:00
Venue: 
INI Seminar Room 1
Abstract: 
In this joint work with I. Benjamini, S. Boucheron, and R. Rossignol, we study the appearance of the giant component in random subgraphs of a given finite graph G = (V,E) in which each edge is present independently with probability p. We show that if G is an expander with vertices of bounded degree, then for any c in (0,1), the property that the random subgraph contains a giant component of size c|V | has a sharp threshold. The main technical tools are based on variance inequalities for functions of independent random variables.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons