Skip to content

AGA

Seminar

Quantum graphs and Topology

Kurasov, P (Lund Institute of Technology)
Wednesday 04 April 2007, 16:30-17:00

Seminar Room 1, Newton Institute

Abstract

Laplace operators on metric graphs are considered. It is proven that for compact graphs the spectrum of the Laplace operator determines the total length, the number of connected components, and the Euler characteristic. For a class of non-compact graphs the same characteristics are determined by the scattering data consisting of the scattering matrix and the discrete eigenvalues. This result is generalized for Schr\"odinger operators on metric graphs.

Audio

MP3MP3

Video

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧