### Vertex sparsifiers: New results from old techniques (and some open questions)

**Krauthgamer, R ***(Weizmann Institute of Science)*

Monday 10 January 2011, 11:30-12:30

Seminar Room 1, Newton Institute

#### Abstract

Given a capacitated graph G = (V,E) and a set of terminals $K \subseteq V$, how should we produce a graph H only on the terminals K so that every (multicommodity) flow between the terminals in G could be supported in H with low congestion, and vice versa? (Such a graph H is called a flow-sparsifier for G.) What if we want H to be a ``simple'' graph? What if we allow H to be a convex combination of simple graphs? And is the question easier if we wanted H to maintain the distances among the terminals (rather than flows)?

Joint work with Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Raecke, Inbal Talgam-Cohen and Kunal Talwar.

#### Presentation

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!