### ME embeddings for groups

**Ozawa, N ***(Tokyo)*

Friday 14 January 2011, 10:00-11:00

Seminar Room 1, Newton Institute

#### Abstract

Two countable discrete groups $G$ and $H$ are said to be measure equivalent, or ME in short, if there is a standard measure space which carries commuting measure-preserving actions of $G$ and $H$ such that each of actions has a fundamental domain of finite measure. For example lattices of a locally compact group are ME to each other. The notion of measure equivalence is introduced by Gromov as a younger brother of quasi-isometry for groups. I will give a survey on ME embeddings.

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!