Skip to content



Coarse Lipschitz embeddings of expander graphs and cotype

Baudier, F (Texas A&M)
Friday 14 January 2011, 16:30-17:30

Seminar Room 1, Newton Institute


In this talk we will discuss recent results of M. Ostrovskii about embeddings of graphs into graphs of bounded degree and Lipschitz embeddings of expanders. Then we will show how we can adapt his construction to prove that there exists a family of expander graphs whose coarse Lipschitz embedding (a.k.a quasi-isometric embedding) into a Banach space forces the target space to have trivial cotype. One wants to mention that the proof does not require a ``metric cotype approach'' and uses only classical Banach space theory.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧