Skip to content



Energy barriers and cell migration in densely packed tissues

Bi, D (Syracuse University)
Tuesday 25 February 2014, 16:15-16:35

Seminar Room 1, Newton Institute


Co-authors: J.H. Lopez (Syracuse University), J.M. Schawarz (Syracuse University), M. Lisa Manning (Syracuse University)

Recent observations demonstrate that densely packed tissues exhibit features of glassy dynamics, such as caging behavior and dynamical heterogeneities, although it has remained unclear how single-cell properties control this behavior. Here we develop numerical and theoretical models to calculate energy barriers to cell rearrangements using Surface Evolver, which help govern cell migration in cell monolayers. In contrast to work on sheared foams, we find that energy barrier heights are exponentially distributed and depend systematically on the cell's number of neighbors. Based on these results, we predict glassy two-time correlation functions for cell motion, with a timescale that increases rapidly as cell activity decreases. These correlation functions are used to construct simple random walks that reproduce the caging behavior observed for cell trajectories in experiments. This work provides a theoretical framework for predicting collective motion of cells in wound-heali ng, embryogenesis and cancer tumorigenesis.

Related Links: • - Preprint


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧