Skip to content



Thresholds for the formation of satellites in two--dimensional vortices

Turner, M (Exeter)
Wednesday 01 October 2008, 11:50-12:10

Seminar Room 1, Newton Institute


We examine the evolution of a two--dimensional vortex which initially consists of an axisymmetric monopole vortex with a perturbation of azimuthal wavenumber m=2 added to it. If the perturbation is weak then the vortex returns to an axisymmetric state and the non--zero Fourier harmonics generated by the perturbation decay to zero. However, if a finite perturbation threshold is exceeded, then a persistent nonlinear vortex structure is formed. This structure consists of a coherent vortex core with two satellites rotating around it.

We consider the formation of these satellites by taking an asymptotic limit in which a compact vortex is surrounded by a weak skirt of vorticity. The resulting equations match the behaviour of a normal mode riding on the vortex with the evolution of fine--scale vorticity in a critical layer inside the skirt. Three estimates of inviscid thresholds for the formation of satellites are computed and compared: two estimates use qualitative diagnostics, the appearance of an inflection point or neutral mode in the mean profile. The other is determined quantitatively by solving the normal mode/critical--layer equations numerically. These calculations are supported by simulations of the full Navier--Stokes equations using a family of profiles based on the tanh function.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧