### Three-dimensional stability of a horizontally sheared flow in a stably stratified fluid

Chomaz, JM *(LadHyX)*

Friday 12 December 2008, 14:30-15:00

Seminar Room 1, Newton Institute

#### Abstract

This work investigates the three-dimensional stability of a horizontal flow sheared horizontally, the hyperbolic tangent velocity profile, in a stably stratified fluid. In an homogeneous fluid, the Squire theorem states that the most unstable perturbation is two-dimensional. When the flow is stably stratified, this theorem does not apply and we have performed a numerical study to investigate the three-dimensional stability characteristics of the flow. When the Froude number, Fh, is varied from ∞ to 0.05, the most unstable mode remains two-dimensional. However, the range of unstable vertical wavenumbers widens proportionally to the inverse of the Froude number for Fh 1. This means that the stronger the stratification, the smaller the vertical scales that can be destabilized. This loss of selectivity of the two-dimensional mode in horizontal shear flows stratified vertically may explain the layering observed numerically and experimentally. Extension to transient and nonlinear behaviour are presented.

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!