Skip to content

ICP

Seminar

Simultaneous break point detection and variable selection in quantile regression models

Aue, A (UC Davis)
Thursday 16 January 2014, 10:30-11:00

Seminar Room 1, Newton Institute

Abstract

This talk discusses new model fitting techniques for quantiles of an observed data sequence, including methods for data segmentation and variable selection. The main contribution, however, is in providing a means to perform these two tasks simultaneously. This is achieved by matching the data with the best-fitting piecewise quantile regression model, where the fit is determined by a penalization derived from the minimum description length principle. The resulting optimization problem is solved with the use of genetic algorithms. The proposed, fully automatic procedures are, unlike traditional break point procedures, not based on repeated hypothesis tests, and do not require, unlike most variable selection procedures, the specification of a tuning parameter. Theoretical large-sample properties are derived. Empirical comparisons with existing break point and variable selection methods for quantiles indicate that the new procedures work well in practice.

Presentation

[pdf ]

Video

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧