Skip to content



Relative entropy method applied to the stability of shocks for systems of conservation laws

Vasseur, A (Texas at Austin)
Tuesday 07 September 2010, 11:30-12:30

Seminar Room 1, Newton Institute


We develop a theory based on relative entropy to show stability and uniqueness of extremal entropic Rankine-Hugoniot discontinuities for systems of conservation laws (typically 1-shocks, n-shocks, 1-contact discontinuities and n-contact discontinuities of big amplitude), among bounded entropic weak solutions having an additional strong trace property. The existence of a convex entropy is needed. No BV estimate is needed on the weak solutions considered. The theory holds without smallness condition. The assumptions are quite general. For instance, the strict hyperbolicity is not needed globally. For fluid mechanics, the theory handles solutions with vacuum.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧