Skip to content

MQI

Seminar

Threshold phenomena for quantum marginals

Szarek, SJ (Case Western Reserve University)
Tuesday 15 October 2013, 15:30-16:30

Seminar Room 1, Newton Institute

Abstract

Co-authors: Guillaume Aubrun (U. Lyon 1), Deping Ye (Memorial U. of Newfoundland)

Consider a quantum system consisting of N identical particles and assume that it is in a random pure state (i.e., uniformly distributed over the sphere of the corresponding Hilbert space). Next, let A and B be two subsystems consisting of k particles each. Are A and B likely to share entanglement? Is the AB-marginal typically PPT?

As it turns out, for many natural properties there is a sharp "phase transition" at some threshold depending on the property in question. For example, there is a threshold K asymptotically equivalent to N/5 such that - if k > K then A and B typically share entanglement - if k < K, then A and B typically do not share entanglement.

The first statement was (essentially) shown in the talk by G. Aubrun. Here we present a general scheme for handling such questions and sketch the analysis specific to entanglement.

The talk is based on arxiv:1106.2264v3; a less-technical overview is in arxiv:1112.4582v2.

Presentation

[pdf ] [pdf ]

Video

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧